MATLAB®
Mathematics

it
y

MATLAB

R2019b =) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Mathematics
© COPYRIGHT 1984-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
June 2004

October 2004
March 2005
June 2005
September 2005
March 2006
September 2006
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019

First printing

Online only
Online only
Second printing
Second printing
Second printing
Second printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 7.0 (Release 14), formerly
part of Using MATLAB

Revised for MATLAB 7.0.1 (Release 14SP1)
Revised for MATLAB 7.0.4 (Release 14SP2)
Minor revision for MATLAB 7.0.4

Revised for MATLAB 7.1 (Release 14SP3)
Revised for MATLAB 7.2 (Release 2006a)
Revised for MATLAB 7.3 (Release 2006b)
Revised for MATLAB 7.5 (Release 2007D)
Revised for MATLAB 7.6 (Release 2008a)
Revised for MATLAB 7.7 (Release 2008b)
Revised for MATLAB 7.8 (Release 2009a)
Revised for MATLAB 7.9 (Release 2009b)
Revised for MATLAB 7.10 (Release 2010a)
Revised for MATLAB 7.11 (Release 2010b)
Revised for MATLAB 7.12 (Release 2011a)
Revised for MATLAB 7.13 (Release 2011b)
Revised for MATLAB 7.14 (Release 2012a)
Revised for MATLAB 8.0 (Release 2012b)
Revised for MATLAB 8.1 (Release 2013a)
Revised for MATLAB 8.2 (Release 2013b)
Revised for MATLAB 8.3 (Release 2014a)
Revised for MATLAB 8.4 (Release 2014b)
Revised for MATLAB 8.5 (Release 2015a)
Revised for MATLAB 8.6 (Release 2015b)
Rereleased for Version 8.5.1 (Release
2015aSP1)

Revised for MATLAB 9.0 (Release 2016a)
Revised for MATLAB 9.1 (Release 2016b)
Revised for MATLAB 9.2 (Release 2017a)
Revised for MATLAB 9.3 (Release 2017b)
Revised for MATLAB 9.4 (Release 2018a)
Revised for MATLAB 9.5 (Release 2018b)
Revised for MATLAB 9.6 (Release 2019a)
Revised for MATLAB 9.7 (Release 2019b)

Contents

Matrices and Arrays

1]

Creating, Concatenating, and Expanding Matrices 1-2
Removing Rows or Columns from a Matrix 1-9
Reshaping and Rearranging Arrays 1-11
Multidimensional Arrays 1-17
ArrayIndexing 1-26

Linear Algebra

2|

Matrices in the MATLAB Environment 2-2
Creating Matrices 2-2
Adding and Subtracting Matrices 2-3
Vector Products and Transposec..vuuunn... 2-4
Multiplying Matricesc i 2-6
Identity Matrix i, 2-8
MatrixInverse i 2-9
Kronecker Tensor Product 2-10
Vector and Matrix Normsc.oviiunn... 2-11
Using Multithreaded Computation with Linear Algebra

Functions 2-12

Systems of Linear Equations 2-13
Computational Considerations 2-13
General Solution 2-15
Square Systems 2-15

vi

Contents

Overdetermined Systems 2-17

Underdetermined Systems 2-20
Solving for Several Right-Hand Sides 2-23
Iterative Methods, 2-24
Multithreaded Computation 2-25
Factorizations i 2-26
Introduction 2-26
Cholesky Factorization 2-26
LU Factorization i, 2-28
QR Factorization 2-29
Using Multithreaded Computation for Factorization 2-32
Powers and Exponentials 2-34
Eigenvalues, 2-39
Eigenvalue Decomposition 2-39
Multiple Eigenvalues, .. 2-40
Schur Decomposition 2-41
SingularValues 2-43
LAPACKIin MATLAB s 2-47
ABriefHistory 2-47
Matrix Exponentials 2-48
Graphical Comparison of Exponential Functions 2-54
Basic Matrix Operations 2-60

Determine Whether Matrix Is Symmetric Positive Definite .. 2-69

Random Numbers

3|

Why Do Random Numbers Repeat After Startup? 3-2
Create Arrays of Random Numbers 3-3
Random Number Functions 3-3

Random Number Generators 3-4
Random Numbers Within a Specific Range 3-7
Random Integers iiiiiiieinnnn. 3-9

Random Numbers from Normal Distribution with Specific

Mean and Varianceuiuunnan. 3-10
Random Numbers Within a Sphere 3-12
Generate Random Numbers That Are Repeatable 3-15

SpecifytheSeed 3-15
Save and Restore the Generator Settings 3-16
Generate Random Numbers That Are Different 3-19
Managing the Global Stream 3-21
Random Number Data Types 3-25
Creating and Controlling a Random Number Stream 3-28
Substreams 3-29
Choosing a Random Number Generator 3-30
Multiple Streams 3-37
Replace Discouraged Syntaxes of rand and randn 3-40
Description of the Discouraged Syntaxes 3-40
Description of Replacement Syntaxes 3-40
Replacement Syntaxes for Initializing the Generator with an
IntegerSeed 3-41
Replacement Syntaxes for Initializing the Generator with a State
VeCtor 3-42
If You Are Unable to Upgrade from Discouraged Syntax 3-43
Controlling Random Number Generation 3-45

viii

Contents

Sparse Matrices

4

Computational Advantages of Sparse Matrices 4-2
Memory Managementc.c.couiiiiiinrenn. 4-2
Computational Efficiency 4-3

Constructing Sparse Matrices 4-4
Creating Sparse Matrices, 4-4
Importing Sparse Matrices 4-8

Accessing Sparse Matrices 4-9
Nonzero Elements 4-9
Indicesand Values 4-11
Indexing in Sparse Matrix Operations 4-11
Visualizing Sparse Matrices 4-15

Sparse Matrix Operations 4-17
Efficiency of Operations 4-17
Permutations and Reordering 4-18
Factoring Sparse Matrices 4-22
Systems of Linear Equations 4-31
Eigenvalues and Singular Values 4-34
References 4-37

Finite Difference Laplacian 4-38

Graphical Representation of Sparse Matrices 4-44

Graphs and Matrices 4-50

Sparse Matrix Reordering 4-58

Graph and Network Algorithms

S|

Directed and Undirected Graphs 5-2
WhatIsa Graph? 5-2
Creating Graphs i 5-6

Graph Node IDs i i 5-9

Modify or Query Existing Graph 5-10
Modify Nodes and Edges of Existing Graph 5-12
Add Graph Node Names, Edge Weights, and Other Attributes

.. 5-16
Graph Plotting and Customization 5-22
Visualize Breadth-First and Depth-First Search 5-37
Partition Graph with Laplacian Matrix 5-43
Add Node Properties to Graph Plot Data Cursor 5-48
Build Watts-Strogatz Small World Graph Model 5-52
Use PageRank Algorithm to Rank Websites 5-61
Label Graph Nodesand Edges 5-71

Functions of One Variable

6/

Create and Evaluate Polynomials 6-2

Roots of Polynomials 6-4
Numeric Roots i i 6-4
Roots Using Substitution 6-5
Rootsina SpecificInterval 6-6
SymbolicRoots 6-8

Integrate and Differentiate Polynomials 6-10
Polynomial Curve Fitting 6-12
Predicting the US Population 6-14

ix

Roots of Scalar Functions 6-21

7

Triangulation Representations 7-2
2-Dand 3-DDomainst 7-2
Triangulation Matrix Format 7-3
Querying Triangulations Using the triangulation Class 7-6

Working with Delaunay Triangulations 7-16
Definition of Delaunay Triangulation 7-16
Creating Delaunay Triangulations 7-18
Triangulation of Point Sets Containing Duplicate Locations .. 7-46

Creating and Editing Delaunay Triangulations 7-49

Spatial Searching 7-67
Introduction 7-67
Nearest-Neighbor Search 7-67
Point-Location Search 7-71

Voronoi Diagrams0..... 7-76
Plot 2-D Voronoi Diagram and Delaunay Triangulation 7-76
Computing the Voronoi Diagram 7-80

Types of Region Boundaries 7-85
Convex Hulls vs. Nonconvex Polygons 7-85
Alpha Shapes 7-89

Computing the ConvexHull 7-93
Computing the Convex Hull Using convhull and convhulln . . 7-93
Convex Hull Computation Using the delaunayTriangulation

ClaSS .« vt 7-99
Convex Hull Computation Using alphaShape 7-101

Contents

Interpolation

8

Gridded and Scattered SampleData 8-2
Interpolating Gridded Data 8-4
Gridded Data Representation 8-1
Grid-Based Interpolation 8-16
Interpolation with the interp Family of Functions 8-24
Interpolation with the griddedInterpolant Class 8-36
Interpolation of Multiple 1-D Value Sets 8-48
Interpolation of 2-D Selections in 3-D Grids 8-50
Interpolating Scattered Data 8-52
Scattered Data 8-52
Interpolating Scattered Data Using griddata and griddatan . 8-55
scatteredInterpolant Class 8-59
Interpolating Scattered Data Using the scatteredInterpolant
ClaSS .« vt 8-60
Interpolation of Complex Scattered Data 8-69
Addressing Problems in Scattered Data Interpolation 8-72
Interpolation Using a Specific Delaunay Triangulation 8-82
Nearest-Neighbor Interpolation Using a delaunayTriangulation
QUETY . ot e 8-82
Linear Interpolation Using a delaunayTriangulation Query .. 8-83
Extrapolating Scattered Data 8-85
Factors That Affect the Accuracy of Extrapolation 8-85
Compare Extrapolation of Coarsely and Finely Sampled
Scattered Data i 8-85
Extrapolationof3-DData 8-89
Normalize Data with Differing Magnitudes 8-92
Resample Image with Gridded Interpolation 8-96

xi

xii

Contents

Optimization

9

Optimizing Nonlinear Functions

9-2

Minimizing Functions of One Variable 9-2
Minimizing Functions of Several Variables 9-4
Maximizing Functions 9-5
fminsearch Algorithm 9-5
Reference i 9-7
Curve Fitting via Optimization 9-8
SetOptions e 9-11
HowtoSetOptions 9-11
OptionsTable 9-12
Tolerances and Stopping Criteria 9-13
Output Structure i 9-14
Iterative Display 9-16
Output Functions 9-18
What Is an Output Function? 9-18
Creating and Using an Output Function 9-18
Structure of the Output Function 9-20
Example of a Nested Output Function 9-20
Fields in optimValues 9-23
States of the Algorithm 9-23
StopFlag ... 9-24
PlotFunctions 9-26
What Isa Plot Function? 9-26
Example: Plot Function 9-26
Troubleshootingand Tips 9-29

Function Handles

10|

Parameterizing Functions 10-2
OVEIVIEW . .o 10-2
Parameterizing Using Nested Functions 10-2
Parameterizing Using Anonymous Functions 10-3

Ordinary Differential Equations (ODEs)

11

Choose an ODE Solver, 11-2
Ordinary Differential Equations 11-2
Typesof ODESo e 11-2
Systems of ODEsS i 11-3
Higher-Order ODEs 11-4
Complex ODES it e 11-5
Basic Solver Selection 11-6
Summary of ODE Examplesand Files 11-9

Summaryof ODEOptions 11-14
Options Syntaxt 11-14
Compatibility of Options with Each Solver 11-14
Usage Examples, 11-16

ODE Event Location 11-17
What is Event Location? 11-17
Writing an Event Function 11-17
Event Information 11-18
Limitations i 11-19
Simple Event Location: A Bouncing Ball 11-19
Advanced Event Location: Restricted Three Body Problem

... 11-20

Solve Nonstiff ODEs, 11-24

Solve Stiff ODEs 11-30

xiii

xiv

Contents

Solve Differential Algebraic Equations (DAEs) 11-38

What is a Differential Algebraic Equation? 11-38
Consistent Initial Conditions 11-39
Differential Index 11-40
Imposing Nonnegativity 11-41
Solve Robertson Problem as Semi-Explicit Differential Algebraic
Equations (DAES) i 11-41
Nonnegative ODE Solution 11-45
Troubleshoot Common ODE Problems 11-50
Error Tolerances 11-50
Problem Scale 11-51
Solution Components, 11-53
Problem Typeo 11-56
Differential Equations 11-58
Solve Predator-Prey Equations 11-69

Boundary Value Problems (BVPs)

12

Solving Boundary Value Problems 12-2
Boundary Conditions 12-2
Initial Guess of Solution 12-3
Finding Unknown Parameters 12-4
Singular BVPs 12-4
BVP Solver Selection 12-5
Evaluating the Solution 12-7
BVP Examplesand Files 12-7

Solve BVP with Two Solutions 12-10

Solve BVP with Unknown Parameter 12-14

Solve BVP Using Continuation 12-19

Verify BVP Consistency Using Continuation 12-25

Solve BVP with Singular Term 12-32

Solve BVP with Multiple Boundary Conditions 12-37

Partial Differential Equations (PDESs)

13|

Solving Partial Differential Equations 13-2
What Types of PDEs Can You Solve with MATLAB? 13-2
Solving 1-DPDEs 13-2
Example: The Heat Equation 13-6
PDE Examplesand Files 13-10

Solve Single PDE 13-12

Solve PDE with Discontinuity 13-20

Solve PDE and Compute Partial Derivatives 13-28

Solve System of PDEs 13-39

Solve System of PDEs with Initial Condition Step Functions
... 13-47

Delay Differential Equations (DDESs)

14

Solving Delay Differential Equations 14-2
Constant Delay DDEs 14-2
Time-Dependent and State-Dependent DDEs 14-2
DDEsof Neutral Type 14-3
Evaluating the Solution at Specific Points 14-3
History and Initial Values 14-3
Discontinuitiesin DDEs 14-3
Propagation of Discontinuities 14-4
DDE Examplesand Files, 14-5

xvi

Contents

DDE with Constant Delays 14-7

DDE with State-Dependent Delays 14-11
Cardiovascular Model DDE with Discontinuities 14-15
DDEof Neutral Type 14-21
Initial Value DDE of Neutral Type 14-26

Numerical Integration

15

Integration to Find Arc Length 15-2
Complex Line Integrals 15-4
Singularity on Interior of Integration Domain 15-7
Analytic Solution to Integral of Polynomial 15-9
Integration of NumericData 15-11
Calculate Tangent Plane to Surface 15-16

Fourier Transforms

16|

Fourier Transforms 16-2
Basic Spectral Analysis 16-11
Spectral Analysis Quantities 16-11
Noisy Signal i 16-11
Audio Signal 16-14
Polynomial Interpolation Using FFT 16-19
FFTin Mathematicso .. 16-19

Interpolate Asteroid Data 16-19

2-D Fourier Transforms 16-24
Two-Dimensional Fourier Transform 16-24
2-D Diffraction Pattern 16-24
FFT for Spectral Analysis 16-28
Square Wave from SineWaves 16-32
Analyzing Cyclical Data with FFT 16-37

xvii

Matrices and Arrays

* “Creating, Concatenating, and Expanding Matrices” on page 1-2
* “Removing Rows or Columns from a Matrix” on page 1-9

* “Reshaping and Rearranging Arrays” on page 1-11

+ “Multidimensional Arrays” on page 1-17

* “Array Indexing” on page 1-26

1 wmatrices and Arrays

Creating, Concatenating, and Expanding Matrices

1-2

The most basic MATLAB® data structure is the matrix. A matrix is a two-dimensional,
rectangular array of data elements arranged in rows and columns. The elements can be
numbers, logical values (true or false), dates and times, strings, or some other
MATLAB data type.

Even a single number is stored as a matrix. For example, a variable containing the value
100 is stored as a 1-by-1 matrix of type double.

A = 100;

whos A
Name Size Bytes C(lass Attributes
A 1x1 8 double

Constructing a Matrix of Data

If you have a specific set of data, you can arrange the elements in a matrix using square
brackets. A single row of data has spaces or commas in between the elements, and a
semicolon separates the rows. For example, create a single row of four numeric elements.
The size of the resulting matrix is 1-by-4, since it has one row and four columns. A matrix
of this shape is often referred to as a row vector.

A = [12 62 93 -8]
A = 1x4
12 62 93 -8
sz = size(A)
sz = 1Ix2
1 4

Now create a matrix with the same numbers, but arrange them in two rows. This matrix
has two rows and two columns.

A = [12 62; 93 -8]

Creating, Concatenating, and Expanding Matrices

A = 2x2
12 62
93 -8

sz = size(A)

sz = 1Ix2

Specialized Matrix Functions

MATLAB has many functions that help create matrices with certain values or a particular
structure. For example, the zeros and ones functions create matrices of all zeros or all
ones. The first and second arguments of these functions are the number of rows and
number of columns of the matrix, respectively.

A = zeros(3,2)

A = 3x2
0 0
0 0
0 0
B = ones(2,4)
B = 2x4
1 1 1 1
1 1 1 1

The diag function places the input elements on the diagonal of a matrix. For example,
create a row vector A containing four elements. Then, create a 4-by-4 matrix whose
diagonal elements are the elements of A.

A =112 62 93 -8];
B = diag(A)
B = 4x4

1-3

1 wmatrices and Arrays

1-4

[N CNON V]
[oNo]

'
[ceNoNoNO]

Concatenating Matrices

You can also use square brackets to join existing matrices together. This way of creating a
matrix is called concatenation. For example, concatenate two row vectors to make an
even longer row vector.

A = ones(1,4);
B = zeros(1,4);
C = [A B]
C = 1x8
1 1 1 1 0 0 0 0

To arrange A and B as two rows of a matrix, use the semicolon.

D = [A;B]

D = 2x4
1 1 1 1
0 0 0 0

To concatenate two matrices, they must have compatible sizes. In other words, when you
concatenate matrices horizontally, they must have the same number of rows. When you
concatenate them vertically, they must have the same number of columns. For example,
horizontally concatenate two matrices that both have two rows.

A = ones(2,3)
A = 2x3
1 1 1
1 1 1
B = zeros(2,2)

Creating, Concatenating, and Expanding Matrices

B = 2x2
0 0
0 0
C = [A B]
C = 2x5
1 1 1 0 0
1 1 1 0 0

An alternative way to concatenate matrices is to use concatenation functions such as
horzcat, which horizontally concatenates two compatible input matrices.

D = horzcat(A,B)

D = 2x5
1 1 1 0 0
1 1 1 0 0

Generating a Numeric Sequence

The colon is a handy way to create matrices whose elements are sequential and evenly
spaced. For example, create a row vector whose elements are the integers from 1 to 10.

A=1:10
A = Ix10

1 2 3 4 5 6 7 8 9 10

You can use the colon operator to create a sequence of numbers within any range,
incremented by one.

A

-2.5:2.5
A = 1Ix6

-2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

1-5

1 wmatrices and Arrays

1-6

To change the value of the sequence increment, specify the increment value in between
the starting and ending range values, separated by colons.

A

0:2:10
A = 1Ix6

0 2 4 6 8 10

To decrement, use a negative number.
A=26:-1:0
A = 1Ix7

6 5 4 3 2 1 0

You can also increment by noninteger values. If an increment value does not evenly
partition the specified range, MATLAB automatically ends the sequence at the last value it
can reach before exceeding the range.

A

1:0.2:2.1
A = 1Ix6

1.0000 1.2000 1.4000 1.6000 1.8000 2.0000

Expanding a Matrix

You can add one or more elements to a matrix by placing them outside of the existing row
and column index boundaries. MATLAB automatically pads the matrix with zeros to keep
it rectangular. For example, create a 2-by-3 matrix and add an additional row and column
to it by inserting an element in the (3,4) position.

A =110 20 30; 60 70 80]
A = 2x3

10 20 30

60 70 80
A(3,4) =1

Creating, Concatenating, and Expanding Matrices

A = 3x4
10 20 30 0
60 70 80 0
0 0 0 1

You can also expand the size by inserting a new matrix outside of the existing index
ranges.

A(4:5,5:6) = [2 3; 4 5]

A = 5x6
10 20 30 0 0 0
60 70 80 0 0 0
0 0 0 1 0 0
0 0 0 0 2 3
0 0 0 0 4 5

To expand the size of a matrix repeatedly, such as within a for loop, it's usually best to
preallocate space for the largest matrix you anticipate creating. Without preallocation,
MATLAB has to allocate memory every time the size increases, slowing down operations.
For example, preallocate a matrix that holds up to 10,000 rows and 10,000 columns by
initializing its elements to zero.

A = zeros(10000,10000);

If you need to preallocate additional elements later, you can expand it by assigning
outside of the matrix index ranges or concatenate another preallocated matrix to A.

Empty Arrays

An empty array in MATLAB is an array with at least one dimension length equal to zero.
Empty arrays are useful for representing the concept of "nothing" programmatically. For
example, suppose you want to find all elements of a vector that are less than 0, but there
are none. The find function returns an empty vector of indices, indicating that it couldn't
find any elements less than 0.

A=1[1234];
ind = find(A<0)

1-7

1 wmatrices and Arrays

ind =
1x0 empty double row vector

Many algorithms contain function calls that can return empty arrays. It is often useful to
allow empty arrays to flow through these algorithms as function arguments instead of
handling them as a special case. If you do need to customize empty array handling, you
can check for them using the isempty function.

TF = isempty(ind)
TF = logical
See Also

Related Examples

. “Array Indexing” on page 1-26

. “Reshaping and Rearranging Arrays” on page 1-11
. “Multidimensional Arrays” on page 1-17

. “Create String Arrays”

. “Represent Dates and Times in MATLAB”

1-8

Removing Rows or Columns from a Matrix

Removing Rows or Columns from a Matrix

The easiest way to remove a row or column from a matrix is to set that row or column
equal to a pair of empty square brackets []. For example, create a 4-by-4 matrix and
remove the second row.

A = magic(4)
A = 4x4
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
A(2,:) =11
3x4
16 2 3 13
9 7 6 12
4 14 15 1

Now remove the third column.

A(:,3) =[]
= 3x3
16 2 13
9 7 12
4 14 1

You can extend this approach to any array. For example, create a random 3-by-3-by-3
array and remove all of the elements in the first matrix of the third dimension.

B = rand(3,3,3);
B(:,:,1) = [1;

1-9

1 wmatrices and Arrays

See Also
Related Examples

. “Reshaping and Rearranging Arrays” on page 1-11
. “Array Indexing” on page 1-26

1-10

Reshaping and Rearranging Arrays

Reshaping and Rearranging Arrays

Many functions in MATLAB® can take the elements of an existing array and put them in a
different shape or sequence. This can be helpful for preprocessing your data for
subsequent computations or analyzing the data.

Reshaping

The reshape function changes the size and shape of an array. For example, reshape a 3-
by-4 matrix to a 2-by-6 matrix.

A=1[14710; 25811; 3 69 12]

A = 3x4
1 4 7 10
2 5 8 11
3 6 9 12
B = reshape(A,2,6)
B = 2x6
1 3 5 7 9 11
2 4 6 8 10 12

As long as the number of elements in each shape are the same, you can reshape them into
an array with any number of dimensions. Using the elements from A, create a 2-by-2-by-3
multidimensional array.

C = reshape(A,2,2,3)

C:

C('Illl)z
1 3
2 4

C(:,:,2) =
5 7

1-11

1 wmatrices and Arrays

6 8
C(:,:,3) =

9 11

10 12

Transposing and Flipping

A common task in linear algebra is to work with the transpose of a matrix, which turns
the rows into columns and the columns into rows. To do this, use the transpose function
or the . ' operator.

Create a 3-by-3 matrix and compute its transpose.

A = magic(3)

A = 3x3
8 1 6
3 5 7
4 9 2

B=A."

B = 3x3
8 3 4
1 5 9
6 7 2

A similar operator ' computes the conjugate transpose for complex matrices. This
operation computes the complex conjugate of each element and transposes it. Create a 2-
by-2 complex matrix and compute its conjugate transpose.

A= [1+i 1-1i; -i i]
A = 2x2 complex

1.0000 + 1.00001i 1.0000 - 1.00001
0.0000 - 1.0000i 0.0000 + 1.0000i

1-12

Reshaping and Rearranging Arrays

B =A'

o
]

2x2 complex
1.0000 - 1.0000i 0.0000 + 1.0000i
1.0000 + 1.00001i 0.0000 - 1.0000i

flipud flips the rows of a matrix in an up-to-down direction, and fliplr flips the
columns in a left-to-right direction.

A=1[12; 34]
A = 2x2

1 2

3 4
B = flipud(A)
B = 2x2

3 4

1 2
C = fliplr(A)
C = 2x2

2 1

4 3

Shifting and Rotating

You can shift elements of an array by a certain number of positions using the circshift
function. For example, create a 3-by-4 matrix and shift its columns to the right by 2. The
second argument [0 2] tells circshift to shift the rows 0 places and shift the columns
2 places to the right.

A=1[1234;56738; 910 11 12]
A = 3x4

1-13

1 wmatrices and Arrays

1 2 3 4
5 6 7 8
9 10 11 12
B = circshift(A,[0 2])
B = 3x4
3 4 1 2
7 8 5 6
11 12 9 10

To shift the rows of A up by 1 and keep the columns in place, specify the second argument
as [-1 0].

C = circshift(A,[-1 0])

C = 3x4
5 6 7 8
9 10 11 12
1 2 3 4

The rot90 function can rotate a matrix counterclockwise by 90 degrees.

A=1[12; 34]

A = 2x2
1 2
3 4
B = rot90(A)
B = 2x2
2 4
1 3

If you rotate 3 more times by using the second argument to specify the number of
rotations, you end up with the original matrix A.

1-14

Reshaping and Rearranging Arrays

C = rot90(B, 3)
C = 2x2

1 2

3 4
Sorting

Sorting the data in an array is also a valuable tool, and MATLAB offers a number of
approaches. For example, the sort function sorts the elements of each row or column of
a matrix separately in ascending or descending order. Create a matrix A and sort each

column of A in ascending order.

A

A

magic(4)

4x4

16 2
5 11
9 7
4 14
sort(A)

4x4

4 2
5 7
9 11
16 14

3
10

15

3
6
10
15

13

12

1
8
12
13

Sort each row in descending order. The second argument value 2 specifies that you want

to sort row-wise.

C
C

sort(A,2, 'descend")

4x4

16 13
11 10
12 9

(6,1

1-15

1 wmatrices and Arrays

15 14 4 1

To sort entire rows or columns relative to each other, use the sortrows function. For
example, sort the rows of A in ascending order according to the elements in the first
column. The positions of the rows change, but the order of the elements in each row are
preserved.

D = sortrows(A)

D = 4x4
4 14 15 1
5 11 10 8
9 7 6 12
16 2 3 13
See Also

Related Examples
. “Removing Rows or Columns from a Matrix” on page 1-9
. “Array Indexing” on page 1-26

1-16

Multidimensional Arrays

Multidimensional Arrays

A multidimensional array in MATLAB® is an array with more than two dimensions. In a
matrix, the two dimensions are represented by rows and columns.

calumn

(1,10 (1,2)[(1,3)|(1,4)
o |12 1] (2.2][(2,8)](2,4)
(3,1)] (3,2)](3.8)](3.4)
(4,70 (4,2)((4,3)[(4,4)

Each element is defined by two subscripts, the row index and the column index.
Multidimensional arrays are an extension of 2-D matrices and use additional subscripts
for indexing. A 3-D array, for example, uses three subscripts. The first two are just like a
matrix, but the third dimension represents pages or sheets of elements.

12,1,3) (2,2,3) (2,3,3772,4,3)

(3,1,3) (3,2,3r13,3,3) (3,4,3)
£,2,3) (4,3,3) (4,4,3)

11,1,2) (1,2,2) (1,3,2) (14,27

-

(2,1,2) 12,2,2) (2,3,2112.4,2) -
_(.Ell'l.lﬁ'l?l‘. (3,1,2) 13,2,2+15,3,2) (3.4,2) _‘_..="
(1,113 (1,2,13 i1,3,1) [.1,:1,?:. 221 14,3,2) (4.4,2) __—"'
|12 22 28 i2,4,1) ad
(3,1,1) (3,2,1) (3,3,1) (3,4,1) I
(4,1,17 (4,2,17 (4,3,1) (4,4,1) ',-'”.
-

Creating Multidimensional Arrays

You can create a multidimensional array by creating a 2-D matrix first, and then
extending it. For example, first define a 3-by-3 matrix as the first page in a 3-D array.

[123; 456; 7 8 9]
A = 3x3

A

1-17

1 wmatrices and Arrays

NP~
oo U1 N
o o w

Now add a second page. To do this, assign another 3-by-3 matrix to the index value 2 in

the third dimension. The syntax A(:, :,2) uses a colon in the first and second
dimensions to include all rows and all columns from the right-hand side of the
assignment.
A(:,:,2) = [10 11 12; 13 14 15; 16 17 18]
A —1
A(:,:,1) =
1 2 3
4 5 6
7 8 9
A(:,:,2) =

10 11 12
13 14 15
16 17 18

The cat function can be a useful tool for building multidimensional arrays. For example,
create a new 3-D array B by concatenating A with a third page. The first argument
indicates which dimension to concatenate along.

B =cat(3,A,[321; 098; 537])
B:
B(:,:,1) =
1 2 3
4 5 6
7 8 9
B(:,:,2) =

10 11 12
13 14 15

1-18

Multidimensional Arrays

Uuo w

w o

~N 00 =

Another way to quickly expand a multidimensional array is by assigning a single element
to an entire page. For example, add a fourth page to B that contains all zeros.

B(:,:

' 4)

0

N

o U1

11
14
17

wonN

[oNoNO]

oo w

12
15
18

~N 00 =

loNoNo]

1-19

1 wmatrices and Arrays

Accessing Elements

To access elements in a multidimensional array, use integer subscripts just as you would
for vectors and matrices. For example, find the 1,2,2 element of A, which is in the first
row, second column, and second page of A.

A

A =

A(:,:,1) =
1 2 3
4 5 6
7 8 9

A(:,:,2) =
10 11 12
13 14 15
16 17 18

elA = A(1,2,2)

elA = 11

Use the index vector [1 3] in the second dimension to access only the first and last
columns of each page of A.

C=A(:,[13],:)
C:
C(:,:,1) =

1 3

4 6

7 9
C(:,:,2) =

10 12

13 15

16 18

1-20

Multidimensional Arrays

To find the second and third rows of each page, use the colon operator to create your
index vector.

D = A(2:3,:,:)

D =
D(:,:,1) =
4 5 6
7 8 9
D(:,:,2) =

13 14 15
16 17 18

Manipulating Arrays

Elements of multidimensional arrays can be moved around in many ways, similar to
vectors and matrices. reshape, permute, and squeeze are useful functions for
rearranging elements. Consider a 3-D array with two pages.

Reshaping a multidimensional array can be useful for performing certain operations or
visualizing the data. Use the reshape function to rearrange the elements of the 3-D array
into a 6-by-5 matrix.

A=1[12345;,90637;81502];
A(:,:,2) =[97852; 35851;69433];
B = reshape(A,[6 5])
B = 6x5

1 3 5 7 5

9 6 7 5 5

1-21

1 wmatrices and Arrays

= oON
o wWhrwu
oOoOwuonN
& 00 00 O
WELNW

reshape operates columnwise, creating the new matrix by taking consecutive elements
down each column of A, starting with the first page then moving to the second page.

Permutations are used to rearrange the order of the dimensions of an array. Consider a 3-

D array M.
M(:,:,1) =[123; 456; 7 8 9];
M(:,:,2) =[054; 27 6; 9 3 1]
M:
M(:,:,1) =

1 2 3

4 5 6

7 8 9
M(:,:,2) =

0 5 4

2 7 6

9 3 1

Use the permute function to interchange row and column subscripts on each page by
specifying the order of dimensions in the second argument. The original rows of M are
now columns, and the columns are now rows.

Pl = permute(M,[2 1 3])

Pl =

P1(:,:,1) =
1 4 7
2 5 8
3 6 9

P1(:,:,2) =

1-22

Multidimensional Arrays

0 2 9
5 7 3
4 6 1

Similarly, interchange row and page subscripts of M.

P2 = permute(M,[3 2 1])
P2 =
P2(:,:,1) =
1 2 3
0 5 4
P2(:,:,2) =
4 5 6
2 7 6
P2(:,:,3) =
7 8 9
9 3 1

When working with multidimensional arrays, you might encounter one that has an
unnecessary dimension of length 1. The squeeze function performs another type of
manipulation that eliminates dimensions of length 1. For example, use the repmat
function to create a 2-by-3-by-1-by-4 array whose elements are each 5, and whose third
dimension has length 1.

A = repmat(5,[2 3 1 4])
A =
A(Illlll) =
5 5 5
5 5 5
A(,.,1'2) =

1-23

1 wmatrices and Arrays

5 5 5

5 5 5
A(1:11'3) =

5 5 5

5 5 5
A(1.11'4) =

5 5 5

5 5 5
szA = size(A)
szA = 1x4

2 3 1 4

numdimsA = ndims (A)
numdimsA = 4

Use the squeeze function to remove the third dimension, resulting in a 3-D array.

B = squeeze(A)
B =
B(:,:,1) =
5 5 5
5 5 5
B(I.l2) =
5 5 5
5 5 5
B(I.l3) =

1-24

See Also

5 5 5
5 5 5
B(’ .14) =
5 5 5
5 5 5
szB = size(B)
szB = 1x3
2 3 4

numdimsB = ndims(B)

1l
w

numdimsB

See Also

Related Examples

. “Creating, Concatenating, and Expanding Matrices” on page 1-2
. “Array Indexing” on page 1-26

. “Reshaping and Rearranging Arrays” on page 1-11

1-25

1 wmatrices and Arrays

Array Indexing

In MATLAB®, there are three primary approaches to accessing array elements based on
their location (index) in the array. These approaches are indexing by position, linear
indexing, and logical indexing.

Indexing with Element Positions

The most common way is to explicitly specify the indices of the elements. For example, to
access a single element of a matrix, specify the row number followed by the column
number of the element.

A=1[1234;5678; 910 11 12; 13 14 15 16]
A = 4x4
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
e = A(3,2)
e =10

e is the element in the 3,2 position (third row, second column) of A.

You can also reference multiple elements at a time by specifying their indices in a vector.
For example, access the first and third elements of the second row of A.

r=A(2,[1 3])
r = 1x2

5 7

To access elements in a range of rows or columns, use the colon. For example, access
the elements in the first through third row and the second through fourth column of A.

r A(1:3,2:4)

r 3x3

1-26

Array Indexing

An alternative way to compute r is to use the keyword end to specify the second column
through the last column. This approach lets you specify the last column without knowing
exactly how many columns are in A.

r =A(1:3,2:end)

r = 3x3
2 3 4
6 7 8
10 11 12

If you want to access all of the rows or columns, use the colon operator by itself. For
example, return the entire third column of A.

r=A(~:,3)

r = 4x1

11
15

In general, you can use indexing to access elements of any array in MATLAB regardless of
its data type or dimensions. For example, directly access a column of a datetime array.

t = [datetime(2018,1:5,1); datetime(2019,1:5,1)]
t = 2x5 datetime array
01-Jan-2018 01-Feb-2018 01-Mar-2018 01-Apr-2018 01-May-2018
01-Jan-2019 01-Feb-2019 01-Mar-2019 01-Apr-2019 01-May-2019
marchl = t(:,3)

marchl = 2x1 datetime array
01-Mar-2018

1-27

1 wmatrices and Arrays

1-28

01-Mar-2019

For higher-dimensional arrays, expand the syntax to match the array dimensions.
Consider a random 3-by-3-by-3 numeric array. Access the element in the second row, third
column, and first sheet of the array.

A = rand(3,3,3);
e = A(2,3,1)
e = 0.5469

For more information on working with multidimensional arrays, see “Multidimensional
Arrays” on page 1-17.

Indexing with a Single Index

Another method for accessing elements of an array is to use only a single index,
regardless of the size or dimensions of the array. This method is known as linear indexing.
While MATLAB displays arrays according to their defined sizes and shapes, they are
actually stored in memory as a single column of elements. A good way to visualize this
concept is with a matrix. While the following array is displayed as a 3-by-3 matrix,
MATLAB stores it as a single column made up of the columns of A appended one after the
other. The stored vector contains the sequence of elements 12, 45, 33, 36, 29, 25, 91, 48,
11, and can be displayed using a single colon.

A = [12 36 91; 45 29 48; 33 25 11]
A = 3x3

12 36 91

45 29 48

33 25 11
Alinear = A(:)
Alinear = 9x1

12

45

33

36

29

25

Array Indexing

91
48
11

For example, the 3,2 element of A is 25, and you can access it using the syntax A(3,2).
You can also access this element using the syntax A(6), since 25 is sixth element of the
stored vector sequence.

e = A(3,2)

e =25
elinear = A(6)
elinear = 25

While linear indexing can be less intuitive visually, it can be powerful for performing
certain computations that are not dependent on the size or shape of the array. For
example, you can easily sum all of the elements of A without having to provide a second
argument to the sum function.

s = sum(A(:))
s = 330

The sub2ind and ind2sub functions help to convert between original array indices and
their linear version. For example, compute the linear index of the 3,2 element of A.

linearidx = sub2ind(size(A),3,2)

linearidx = 6

Convert from the linear index back to its row and column form.
[row,col] = ind2sub(size(A),6)

row = 3

col =2

Indexing with Logical Values

Using true and false logical indicators is another useful way to index into arrays,
particularly when working with conditional statements. For example, say you want to
know if the elements of a matrix A are less than the corresponding elements of another

1-29

1 wmatrices and Arrays

matrix B. The less-than operator returns a logical array whose elements are 1 when an
element in A is smaller than the corresponding element in B.

A=1[126; 43 6]

A = 2x3
1 2 6
4 3 6

B=1[037; 375]

B = 2x3
0 3 7
3 7 5
ind = A<B

ind = 2x3 logical array

Now that you know the locations of the elements meeting the condition, you can inspect
the individual values using ind as the index array. MATLAB matches the locations of the
value 1 in ind to the corresponding elements of A and B, and lists their values in a
column vector.

Avals = A(ind)

Avals = 3x1

wN

Bvals B(ind)

3x1

Bvals

1-30

See Also

MATLAB "is" functions also return logical arrays that indicate which elements of the input
meet a certain condition. For example, check which elements of a string vector are
missing using the ismissing function.

Str - [IIAII ||B|| [I'llSSlng ||D|| ||E|| m1551ng];
ind = ismissing(str)
ind = 1x6 logical array

0 0 1 0 0 1

Suppose you want to find the values of the elements that are not missing. Use the ~
operator with the index vector ind to do this.

strvals = str(~ind)

strvals = 1x4 string array
X ngn " nEn

For more examples using logical indexing, see “Find Array Elements That Meet a
Condition”.

See Also

Related Examples

. “Access Data Using Categorical Arrays”
. “Access Data in Tables”
. “Access Data in Structure Array”

. “Access Data in Cell Array”

1-31

Linear Algebra

* “Matrices in the MATLAB Environment” on page 2-2

» “Systems of Linear Equations” on page 2-13

* “Factorizations” on page 2-26

* “Powers and Exponentials” on page 2-34

+ “Eigenvalues” on page 2-39

* “Singular Values” on page 2-43

+ “LAPACK in MATLAB” on page 2-47

* “Matrix Exponentials” on page 2-48

* “Graphical Comparison of Exponential Functions” on page 2-54
* “Basic Matrix Operations” on page 2-60

* “Determine Whether Matrix Is Symmetric Positive Definite” on page 2-69

2 Linear Algebra

Matrices in the MATLAB Environment

2-2

This topic contains an introduction to creating matrices and performing basic matrix
calculations in MATLAB.

The MATLAB environment uses the term matrix to indicate a variable containing real or
complex numbers arranged in a two-dimensional grid. An array is, more generally, a
vector, matrix, or higher dimensional grid of numbers. All arrays in MATLAB are
rectangular, in the sense that the component vectors along any dimension are all the
same length. The mathematical operations defined on matrices are the subject of linear
algebra.

Creating Matrices

MATLAB has many functions that create different kinds of matrices. For example, you can
create a symmetric matrix with entries based on Pascal's triangle:

A = pascal(3)

A =
1 1 1
1 2 3
1 3 6

Or, you can create an unsymmetric magic square matrix, which has equal row and column
sums:

B = magic(3)

B =
8 1 6
3 5 7
4 9 2

Another example is a 3-by-2 rectangular matrix of random integers. In this case the first
input to randi describes the range of possible values for the integers, and the second
two inputs describe the number of rows and columns.

C

randi(10,3,2)

Matrices in the MATLAB Environment

9 10
10 7
2 1

A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-
by-1 matrix. To define a matrix manually, use square brackets [] to denote the
beginning and end of the array. Within the brackets, use a semicolon ; to denote the end
of a row. In the case of a scalar (1-by-1 matrix), the brackets are not required. For
example, these statements produce a column vector, a row vector, and a scalar:

u=[3; 1; 4]
v=1_[20 -1]
s =7
u:

3

1

4
V:

2 0 -1
S:

7

For more information about creating and working with matrices, see “Creating,
Concatenating, and Expanding Matrices” on page 1-2.

Adding and Subtracting Matrices

Addition and subtraction of matrices and arrays is performed element-by-element, or
element-wise. For example, adding A to B and then subtracting A from the result recovers
B:

X=A+B

X =
9 2 7
4 7 10
5 12 8

Y=X-A

2-3

2 Linear Algebra

Y =
8 1 6
3 5 7
4 9 2

Addition and subtraction require both matrices to have compatible dimensions. If the
dimensions are incompatible, an error results:

X=A+C

Error using +
Matrix dimensions must agree.

For more information, see “Array vs. Matrix Operations”.

Vector Products and Transpose

A row vector and a column vector of the same length can be multiplied in either order.
The result is either a scalar, called the inner product, or a matrix, called the outer

product:

u=1[3;1; 4];

v=1_[20-11;

X = v*u

x =
2

X = u*v

X =
6 0 -3
2 0 -1
8 0 -4

For real matrices, the transpose operation interchanges a; and a;;. For complex matrices,
another consideration is whether to take the complex conjugate of complex entries in the
array to form the complex conjugate transpose. MATLAB uses the apostrophe operator (')
to perform a complex conjugate transpose, and the dot-apostrophe operator (. ') to
transpose without conjugation. For matrices containing all real elements, the two
operators return the same result.

2-4

Matrices in the MATLAB Environment

The example matrix A = pascal(3) is symmetric, so A' is equal to A. However, B =
magic(3) is not symmetric, so B' has the elements reflected along the main diagonal:

B = magic(3)

B —
8 1 6
3 5 7
4 9 2

X = B'

X —
8 3 4
1 5 9
6 7 2

X =V
X =
2
0
-1

If x and y are both real column vectors, then the product x*y is not defined, but the two
products

X' *y
and
y'*x

produce the same scalar result. This quantity is used so frequently, it has three different
names: inner product, scalar product, or dot product. There is even a dedicated function
for dot products named dot.

For a complex vector or matrix, z, the quantity z' not only transposes the vector or
matrix, but also converts each complex element to its complex conjugate. That is, the sign
of the imaginary part of each complex element changes. For example, consider the
complex matrix

2-5

2 Linear Algebra

2-6

[1+21i 7-3i 3+4i; 6-21 9i 4+7i]

N
Il

1.0000 + 2.00001i 7.0000 - 3.0000i 3.0000 + 4.00001
6.0000 - 2.0000i 0.0000 + 9.00001i 4.0000 + 7.00001

The complex conjugate transpose of z is:

1.0000 - 2.0000i 6.0000 + 2.0000i
7.0000 + 3.00001 0.0000 - 9.00001
3.0000 - 4.00001 4.0000 - 7.00001

The unconjugated complex transpose, where the complex part of each element retains its
sign, is denoted by z. ':

1.0000 + 2.00001i 6.0000 - 2.0000i
7.0000 - 3.00001 0.0000 + 9.00001
3.0000 + 4.00001 4.0000 + 7.00001

For complex vectors, the two scalar products X' *y and y ' *Xx are complex conjugates of
each other, and the scalar product x ' *x of a complex vector with itself is real.

Multiplying Matrices

Multiplication of matrices is defined in a way that reflects composition of the underlying
linear transformations and allows compact representation of systems of simultaneous
linear equations. The matrix product C = AB is defined when the column dimension of A is
equal to the row dimension of B, or when one of them is a scalar. If A is m-by-p and B is p-
by-n, their product C is m-by-n. The product can actually be defined using MATLAB for
loops, colon notation, and vector dot products:

A = pascal(3);
B = magic(3);
m= 3;
n=3;

Matrices in the MATLAB Environment

end

MATLAB uses an asterisk to denote matrix multiplication, as in C = A*B. Matrix
multiplication is not commutative; that is, A*B is typically not equal to B*A:

X = A*B

X =
15 15 15
26 38 26
41 70 39

Y = B*A
15 28 47

15 34 60
15 28 43

A matrix can be multiplied on the right by a column vector and on the left by a row
vector:

u= [3; 1; 4];
X = A*u
X =
8
17
30
v=1_[20-1];
y = V*¥B
y =
12 -7 10

Rectangular matrix multiplications must satisfy the dimension compatibility conditions.
Since A is 3-by-3 and C is 3-by-2, you can multiply them to get a 3-by-2 result (the
common inner dimension cancels):

2-7

2 Linear Algebra

2-8

X = A*C

X =
24 17
47 42
79 77

However, the multiplication does not work in the reverse order:
Y = C*A

Error using *

Incorrect dimensions for matrix multiplication. Check that the number of columns
in the first matrix matches the number of rows in the second matrix. To perform
elementwise multiplication, use '.*'.

You can multiply anything with a scalar:

s = 10;
w = s*y
w =

120 -70 100

When you multiply an array by a scalar, the scalar implicitly expands to be the same size
as the other input. This is often referred to as scalar expansion.

Identity Matrix

Generally accepted mathematical notation uses the capital letter I to denote identity
matrices, matrices of various sizes with ones on the main diagonal and zeros elsewhere.
These matrices have the property that AI = A and IA = A whenever the dimensions are
compatible.

The original version of MATLAB could not use I for this purpose because it did not
distinguish between uppercase and lowercase letters and i already served as a subscript
and as the complex unit. So an English language pun was introduced. The function

eye(m,n)

returns an m-by-n rectangular identity matrix and eye (n) returns an n-by-n square
identity matrix.

Matrices in the MATLAB Environment

Matrix Inverse

If a matrix A is square and nonsingular (nonzero determinant), then the equations AX = I
and XA = I have the same solution X. This solution is called the inverse of A and is
denoted Al. The inv function and the expression A~-1 both compute the matrix inverse.

A = pascal(3)
A:
1
1
1
X = inv(A)
X:
3.0000
-3.0000
1.0000
A*X
ans =
1.0000
0.0000
-0.0000

N =
w =

-3.0000
5.0000
-2.0000

0
1.0000
0.0000

1.0000
-2.0000
1.0000

0
-0.0000
1.0000

The determinant calculated by det is a measure of the scaling factor of the linear
transformation described by the matrix. When the determinant is exactly zero, the matrix
is singular and no inverse exists.

d = det(A)

d =

1

Some matrices are nearly singular, and despite the fact that an inverse matrix exists, the
calculation is susceptible to numerical errors. The cond function computes the condition
number for inversion, which gives an indication of the accuracy of the results from matrix
inversion. The condition number ranges from 1 for a numerically stable matrix to Inf for
a singular matrix.

2-9

2 Linear Algebra

2-10

cond(A)

0
Il

61.9839

It is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv
arises when solving the system of linear equations Ax = b. The best way to solve this
equation, from the standpoint of both execution time and numerical accuracy, is to use the
matrix backslash operator x = A\b. See mldivide for more information.

Kronecker Tensor Product

The Kronecker product, kron(X,Y), of two matrices is the larger matrix formed from all
possible products of the elements of X with those of Y. If X is m-by-n and Y is p-by-q, then
kron(X,Y) is mp-by-ng. The elements are arranged such that each element of X is
multiplied by the entire matrix Y:

IX(1,1)%Y X(1,2)%Y . . . X(1,n)*Y
X(m,1)*¥Y X(m,2)%Y . . . X(m,n)*Y]

The Kronecker product is often used with matrices of zeros and ones to build up repeated
copies of small matrices. For example, if X is the 2-by-2 matrix

X=11 2
3 4]

and I = eye(2,2) is the 2-by-2 identity matrix, then:

kron(X,I)

ans =
1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

and

kron(I,X)

ans =

Matrices in the MATLAB Environment

[cN RN
OO h~N
WwWrRroo
ANOO

Aside from kron, some other functions that are useful to replicate arrays are repmat,
repelem, and blkdiag.

Vector and Matrix Norms

The p-norm of a vector x,

Iy = (S)7,

is computed by norm(x, p). This operation is defined for any value of p > 1, but the most
common values of p are 1, 2, and «. The default value is p = 2, which corresponds to
Euclidean length or vector magnitude:

v=1_[20-1];
[norm(v,1) norm(v) norm(v,inf)]

ans =
3.0000 2.2361 2.0000
The p-norm of a matrix A,

Ax
Al = max e,
X p

can be computed for p = 1, 2, and « by norm(A, p). Again, the default value is p = 2:

A = pascal(3);
[norm(A,1) norm(A) norm(A,inf)]

ans =
10.0000 7.8730 10.0000

In cases where you want to calculate the norm of each row or column of a matrix, you can
use vecnorm:

vecnorm(A)

2-11

2 Linear Algebra

2-12

ans =

1.7321 3.7417 6.7823

Using Multithreaded Computation with Linear Algebra
Functions

MATLAB supports multithreaded computation for a number of linear algebra and
element-wise numerical functions. These functions automatically execute on multiple
threads. For a function or expression to execute faster on multiple CPUs, a number of
conditions must be true:

1 The function performs operations that easily partition into sections that execute
concurrently. These sections must be able to execute with little communication
between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution
outweigh the time required to partition the data and manage separate execution
threads. For example, most functions speed up only when the array contains several
thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory
access time. As a general rule, complicated functions speed up more than simple
functions.

The matrix multiply (X*Y) and matrix power (X"~p) operators show significant increase
in speed on large double-precision arrays (on order of 10,000 elements). The matrix
analysis functions det, rcond, hess, and expm also show significant increase in speed on
large double-precision arrays.

Systems of Linear Equations

Systems of Linear Equations

In this section...

“Computational Considerations” on page 2-13
“General Solution” on page 2-15

“Square Systems” on page 2-15

“Overdetermined Systems” on page 2-17
“Underdetermined Systems” on page 2-20

“Solving for Several Right-Hand Sides” on page 2-23
“Iterative Methods” on page 2-24

“Multithreaded Computation” on page 2-25

Computational Considerations

One of the most important problems in technical computing is the solution of systems of
simultaneous linear equations.

In matrix notation, the general problem takes the following form: Given two matrices A
and b, does there exist a unique matrix x, so that Ax= b or xA= b?

It is instructive to consider a 1-by-1 example. For example, does the equation
7x = 21
have a unique solution?

The answer, of course, is yes. The equation has the unique solution x = 3. The solution is
easily obtained by division:

X = 2177 = 3.

The solution is not ordinarily obtained by computing the inverse of 7, that is 7-
1=0.142857..., and then multiplying 7-* by 21. This would be more work and, if 7-! is
represented to a finite number of digits, less accurate. Similar considerations apply to
sets of linear equations with more than one unknown; MATLAB solves such equations
without computing the inverse of the matrix.

2-13

2 Linear Algebra

Although it is not standard mathematical notation, MATLAB uses the division terminology
familiar in the scalar case to describe the solution of a general system of simultaneous
equations. The two division symbols, slash, /, and backslash, \, correspond to the two
MATLAB functions mrdivide and mldivide. These operators are used for the two
situations where the unknown matrix appears on the left or right of the coefficient matrix:

X = b/A Denotes the solution to the matrix equation XA = b,
obtained using mrdivide.
x = A\b Denotes the solution to the matrix equation Ax = b,

obtained using mldivide.

Think of “dividing” both sides of the equation Ax = b or xA = b by A. The coefficient
matrix A is always in the “denominator.”

The dimension compatibility conditions for x = A\b require the two matrices A and b to
have the same number of rows. The solution x then has the same number of columns as b
and its row dimension is equal to the column dimension of A. For x = b/A, the roles of
rows and columns are interchanged.

In practice, linear equations of the form Ax = b occur more frequently than those of the
form xA = b. Consequently, the backslash is used far more frequently than the slash. The
remainder of this section concentrates on the backslash operator; the corresponding
properties of the slash operator can be inferred from the identity:

(b/A)" = (A'\b").

The coefficient matrix A need not be square. If A has size m-by-n, then there are three

cases:

m=n Square system. Seek an exact solution.

m>n Overdetermined system, with more equations than
unknowns. Find a least-squares solution.

m<n Underdetermined system, with fewer equations than
unknowns. Find a basic solution with at most m nonzero
components.

The midivide Algorithm

The mldivide operator employs different solvers to handle different kinds of coefficient
matrices. The various cases are diagnosed automatically by examining the coefficient

2-14

Systems of Linear Equations

matrix. For more information, see the “Algorithms” section of the mldivide reference
page.

General Solution

The general solution to a system of linear equations Ax= b describes all possible
solutions. You can find the general solution by:

1 Solving the corresponding homogeneous system Ax = 0. Do this using the null
command, by typing null(A). This returns a basis for the solution space to Ax = 0.
Any solution is a linear combination of basis vectors.

2 Finding a particular solution to the nonhomogeneous system Ax =b.

You can then write any solution to Ax= b as the sum of the particular solution to Ax =b,
from step 2, plus a linear combination of the basis vectors from step 1.

The rest of this section describes how to use MATLAB to find a particular solution to
Ax =b, as in step 2.

Square Systems

The most common situation involves a square coefficient matrix A and a single right-hand
side column vector b.

Nonsingular Coefficient Matrix

If the matrix A is nonsingular, then the solution, x = A\b, is the same size as b. For
example:

A = pascal(3);
u=1[3;1; 4];
x = A\u
X =
10
-12
5

It can be confirmed that A*x is exactly equal to u.

If A and b are square and the same size, x= A\b is also that size:

2-15

2 Linear Algebra

2-16

b = magic(3);
X = A\b
X =
19 -3 -1
-17 4 13
6 0 -6

It can be confirmed that A*x is exactly equal to b.

Both of these examples have exact, integer solutions. This is because the coefficient
matrix was chosen to be pascal(3), which is a full rank matrix (nonsingular).

Singular Coefficient Matrix

A square matrix A is singular if it does not have linearly independent columns. If A is
singular, the solution to Ax = b either does not exist, or is not unique. The backslash
operator, A\b, issues a warning if A is nearly singular or if it detects exact singularity.

If A is singular and Ax = b has a solution, you can find a particular solution that is not
unique, by typing

P = pinv(A)*b

pinv(A) is a pseudoinverse of A. If Ax = b does not have an exact solution, then
pinv(A) returns a least-squares solution.

For example:

A=11 3 7

is singular, as you can verify by typing
rank (A)
ans =
2
Since A is not full rank, it has some singular values equal to zero.

Exact Solutions. For b =[5;2;12], the equation Ax = b has an exact solution, given by

Systems of Linear Equations

pinv(A)*b

ans =
0.3850
-0.1103
0.7066

Verify that pinv(A)*b is an exact solution by typing
A*pinv(A)*b

ans =
5.0000
2.0000

12.0000

Least-Squares Solutions. However, if b = [3;6;0], Ax = b does not have an exact
solution. In this case, pinv (A)*b returns a least-squares solution. If you type

A*pinv(A)*b

ans =
-1.0000
4.0000
2.0000

you do not get back the original vector b.

You can determine whether Ax =b has an exact solution by finding the row reduced
echelon form of the augmented matrix [A b]. To do so for this example, enter

rref([A b])
ans =
1.0000 0 2.2857 0
0 1.0000 1.5714 0
0 0 0 1.0000

Since the bottom row contains all zeros except for the last entry, the equation does not
have a solution. In this case, pinv (A) returns a least-squares solution.

Overdetermined Systems

This example shows how overdetermined systems are often encountered in various kinds
of curve fitting to experimental data.

2-17

2 Linear Algebra

2-18

A quantity y is measured at several different values of time t to produce the following
observations. You can enter the data and view it in a table with the following statements.

t=1[00.3.81.11.6 2.31";
y =[.82 .72 .63 .60 .55 .50]"';
B = table(t,y)
B=6x2 table

t y

0 0.82

0.3 0.72

0.8 0.63

1.1 0.6

1.6 0.55

2.3 0.5

Try modeling the data with a decaying exponential function

y(t) = c1 + cpet,

The preceding equation says that the vector y should be approximated by a linear
combination of two other vectors. One is a constant vector containing all ones and the
other is the vector with components exp (- t). The unknown coefficients, ¢; and ¢y, can
be computed by doing a least-squares fit, which minimizes the sum of the squares of the
deviations of the data from the model. There are six equations in two unknowns,
represented by a 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]

E = 6x2
1.0000 1.0000
1.0000 0.7408
1.0000 0.4493
1.0000 0.3329
1.0000 0.2019
1.0000 0.1003

Use the backslash operator to get the least-squares solution.

c = E\y

Systems of Linear Equations

c = 2x1

0.4760
0.3413

In other words, the least-squares fit to the data is

y(t) =0.4760 + 0.3413e L.

The following statements evaluate the model at regularly spaced increments in t, and
then plot the result together with the original data:

T (0:0.1:2.5)';
Y [ones(size(T)) exp(-T)]*c;
plot(T,Y,"'-"',t,y,'0")

2-19

2 Linear Algebra

0.85 T T T
0.8
0.75
0.7
0.65

0.6

0.55F

DS I I I

E*c is not exactly equal to y, but the difference might well be less than measurement

errors in the original data.

A rectangular matrix A is rank deficient if it does not have linearly independent columns.
If A is rank deficient, then the least-squares solution to AX = B is not unique. A\B issues
a warning if A is rank deficient and produces a least-squares solution. You can use
lsgminnorm to find the solution X that has the minimum norm among all solutions.

Underdetermined Systems

This example shows how the solution to underdetermined systems is not unique.
Underdetermined linear systems involve more unknowns than equations. The matrix left

2-20

Systems of Linear Equations

division operation in MATLAB finds a basic least-squares solution, which has at
most m nonzero components for an m-by-n coefficient matrix.

Here is a small, random example:

R=1[6873; 3541]

rng(o);
b = randi(8,2,1)
R =
6 8 7 3
3 5 4 1
b =
7
8

The linear system Rp = b involves two equations in four unknowns. Since the coefficient
matrix contains small integers, it is appropriate to use the format command to display
the solution in rational format. The particular solution is obtained with

format rat
p = R\b
p =
0
1777
0
-29/7

One of the nonzero components is p(2) because R(:,2) is the column of R with largest
norm. The other nonzero component is p(4) because R(: ,4) dominates after R(:,2) is
eliminated.

The complete general solution to the underdetermined system can be characterized by
adding p to an arbitrary linear combination of the null space vectors, which can be found
using the null function with an option requesting a rational basis.

YA null(R,'r")

z

2-21

2 Linear Algebra

2-22

-1/2 -7/6
-1/2 1/2
1 0
0 1

It can be confirmed that R*Z is zero and that the residual R*x - b is small for any vector
X, where

X = p + Z*q

Since the columns of Z are the null space vectors, the product Z*q is a linear combination
of those vectors:

= u?l + WYZ .

To illustrate, choose an arbitrary q and construct x.

[-2; 11;
p + Z*q;

q
X

Calculate the norm of the residual.

format short
norm(R*x - b)

ans =

2.6645e-15

When infinitely many solutions are available, the solution with minimum norm is of
particular interest. You can use Lsqminnorm to compute the minimum-norm least-
squares solution. This solution has the smallest possible value for norm(p).

p = lsgminnorm(R,b)
p =
-207/137
365/137
79/137
-424/137

Systems of Linear Equations

Solving for Several Right-Hand Sides

Some problems are concerned with solving linear systems that have the same coefficient
matrix A, but different right-hand sides b. When the different values of b are available at
the same time, you can construct b as a matrix with several columns and solve all of the
systems of equations at the same time using a single backslash command: X = A\[bl b2
b3 ..1.

However, sometimes the different values of b are not all available at the same time, which
means you need to solve several systems of equations consecutively. When you solve one
of these systems of equations using slash (/) or backslash (\), the operator factorizes the
coefficient matrix A and uses this matrix decomposition to compute the solution. However,
each subsequent time you solve a similar system of equations with a different b, the
operator computes the same decomposition of A, which is a redundant computation.

The solution to this problem is to precompute the decomposition of A, and then reuse the
factors to solve for the different values of b. In practice, however, precomputing the
decomposition in this manner can be difficult since you need to know which
decomposition to compute (LU, LDL, Cholesky, and so on) as well as how to multiply the
factors to solve the problem. For example, with LU decomposition you need to solve two
linear systems to solve the original system Ax = b:

[L,U] = lu(A);
x=U\ (L \ b);

Instead, the recommended method for solving linear systems with several consecutive
right-hand sides is to use decomposition objects. These objects enable you to leverage
the performance benefits of precomputing the matrix decomposition, but they do not
require knowledge of how to use the matrix factors. You can replace the previous LU
decomposition with:

dA = decomposition(A, 'lu');
x = dA\b;

If you are unsure which decomposition to use, decomposition(A) chooses the correct
type based on the properties of A, similar to what backslash does.

Here is a simple test of the possible performance benefits of this approach. The test
solves the same sparse linear system 100 times using both backslash (\) and
decomposition.

le3;
sprand(n,n,0.2) + speye(n);

n
A

2-23

2 Linear Algebra

b = ones(n,1);

% Backslash solution

tic

for k = 1:100
X = A\b;

end

toc

Elapsed time is 9.006156 seconds.
% decomposition solution
c

t1i
dA = decomposition(A);
fo

rk=1:100

x = dA\b;
end
toc

Elapsed time is 0.374347 seconds.

For this problem, the decomposition solution is much faster than using backslash alone,
yet the syntax remains simple.

Iterative Methods

If the coefficient matrix A is large and sparse, factorization methods are generally not
efficient. Iterative methods generate a series of approximate solutions. MATLAB provides
several iterative methods to handle large, sparse input matrices.

Function Description

pcg Preconditioned conjugate gradients method. This method is
appropriate for Hermitian positive definite coefficient matrix A.

bicg BiConjugate Gradients Method

bicgstab BiConjugate Gradients Stabilized Method

bicgstabl BiCGStab(l) Method

cgs Conjugate Gradients Squared Method

gmres Generalized Minimum Residual Method

lsqr LSQR Method

2-24

Systems of Linear Equations

Function Description

minres Minimum Residual Method. This method is appropriate for
Hermitian coefficient matrix A.

gmr Quasi-Minimal Residual Method

symmlq Symmetric LQ Method

tfgmr Transpose-Free QMR Method

Multithreaded Computation

MATLAB supports multithreaded computation for a number of linear algebra and

element-wise numerical functions. These functions automatically execute on multiple
threads. For a function or expression to execute faster on multiple CPUs, a number of
conditions must be true:

1 The function performs operations that easily partition into sections that execute
concurrently. These sections must be able to execute with little communication
between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution

outweigh the time required to partition the data and manage separate execution

threads. For example, most functions speed up only when the array contains several
thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory

access time. As a general rule, complicated functions speed up more than simple
functions.

inv, lscov, linsolve, and mldivide show significant increase in speed on large
double-precision arrays (on order of 10,000 elements or more) when multithreading is

enabled.

2-25

2 Linear Algebra

Factorizations

2-26

In this section...

“Introduction” on page 2-26

“Cholesky Factorization” on page 2-26

“LU Factorization” on page 2-28

“QR Factorization” on page 2-29

“Using Multithreaded Computation for Factorization” on page 2-32

Introduction

All three of the matrix factorizations discussed in this section make use of triangular
matrices, where all the elements either above or below the diagonal are zero. Systems of
linear equations involving triangular matrices are easily and quickly solved using either
forward or back substitution.

Cholesky Factorization

The Cholesky factorization expresses a symmetric matrix as the product of a triangular
matrix and its transpose

A = RR,
where R is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that have such a
factorization are said to be positive definite. This implies that all the diagonal elements of
A are positive and that the off-diagonal elements are “not too big.” The Pascal matrices
provide an interesting example. Throughout this chapter, the example matrix A has been
the 3-by-3 Pascal matrix. Temporarily switch to the 6-by-6:

A = pascal(6)

A -
1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 56

Factorizations

1 5 15 35 70 126
1 6 21 56 126 252

The elements of A are binomial coefficients. Each element is the sum of its north and west
neighbors. The Cholesky factorization is

R = chol(A)

R —
1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

The elements are again binomial coefficients. The fact that R' *R is equal to A
demonstrates an identity involving sums of products of binomial coefficients.

Note The Cholesky factorization also applies to complex matrices. Any complex matrix
that has a Cholesky factorization satisfies

A = A

and is said to be Hermitian positive definite.

The Cholesky factorization allows the linear system

Ax = b
to be replaced by
R'Rx = b.

Because the backslash operator recognizes triangular systems, this can be solved in the
MATLAB environment quickly with

x = R\(R'\b)

If A is n-by-n, the computational complexity of chol(A) is O(n3), but the complexity of the
subsequent backslash solutions is only O(n?).

2-27

2 Linear Algebra

2-28

LU Factorization

LU factorization, or Gaussian elimination, expresses any square matrix A as the product of
a permutation of a lower triangular matrix and an upper triangular matrix

A = LU,

where L is a permutation of a lower triangular matrix with ones on its diagonal and U is
an upper triangular matrix.

The permutations are necessary for both theoretical and computational reasons. The
matrix

01
10

cannot be expressed as the product of triangular matrices without interchanging its two
rows. Although the matrix

el
10
can be expressed as the product of triangular matrices, when ¢ is small, the elements in
the factors are large and magnify errors, so even though the permutations are not strictly

necessary, they are desirable. Partial pivoting ensures that the elements of L are bounded
by one in magnitude and that the elements of U are not much larger than those of A.

For example:

[L,U] = lu(B)

L=
1.0000 0 0
0.3750 0.5441 1.0000
0.5000 1.0000 0

U=

8.0000 1.0000 6.0000
0 8.5000 -1.0000
0 0 5.2941

The LU factorization of A allows the linear system

Factorizations

A*x = b
to be solved quickly with
x = U\(L\b)

Determinants and inverses are computed from the LU factorization using

det(A) det(L)*det(U)

and

inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)), though the
signs of the determinants might be reversed.

QR Factorization

An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix whose
columns all have unit length and are perpendicular to each other. If Q is orthogonal, then

QQ = 1.
The simplest orthogonal matrices are two-dimensional coordinate rotations:

cos(0) sin(0)
—sin(0) cos(0)|

For complex matrices, the corresponding term is unitary. Orthogonal and unitary
matrices are desirable for numerical computation because they preserve length, preserve
angles, and do not magnify errors.

The orthogonal, or QR, factorization expresses any rectangular matrix as the product of
an orthogonal or unitary matrix and an upper triangular matrix. A column permutation
might also be involved:

A = QR
or
AP = QR,

2-29

2 Linear Algebra

2-30

where Q is orthogonal or unitary, R is upper triangular, and P is a permutation.

There are four variants of the QR factorization—full or economy size, and with or without
column permutation.

Overdetermined linear systems involve a rectangular matrix with more rows than
columns, that is m-by-n with m > n. The full-size QR factorization produces a square, m-
by-m orthogonal Q and a rectangular m-by-n upper triangular R:

C=gallery('uniformdata', [5 4], 0);
[Q,R] = gr(C)

Q =

0.6191 0.1406 -0.1899 -0.5058 0.5522
0.1506 0.4084 0.5034 0.5974 0.4475
0.3954 -0.5564 0.6869 -0.1478 -0.2008
0.3167 0.6676 0.1351 -0.1729 -0.6370
0.5808 -0.2410 -0.4695 0.5792 -0.2207

1.5346 1.0663 1.2010 1.4036
0 0.7245 0.3474 -0.0126

0 0 0.9320 0.6596
0 0 0 0.6648
0 0 0 0

In many cases, the last m - n columns of Q are not needed because they are multiplied by
the zeros in the bottom portion of R. So the economy-size QR factorization produces a
rectangular, m-by-n Q with orthonormal columns and a square n-by-n upper triangular R.
For the 5-by-4 example, this is not much of a saving, but for larger, highly rectangular
matrices, the savings in both time and memory can be quite important:

[Q,R] = qr(C,0)
Q =

0.6191 0.1406 -0.1899 -0.5058
0.1506 0.4084 0.5034 0.5974
0.3954 -0.5564 0.6869 -0.1478
0.3167 0.6676 0.1351 -0.1729
0.5808 -0.2410 -0.4695 0.5792

Factorizations

1.5346 1.0663 1.2010 1.4036
0 0.7245 0.3474 -0.0126
0 0 0.9320 0.6596
0 0 0 0.6648

In contrast to the LU factorization, the QR factorization does not require any pivoting or
permutations. But an optional column permutation, triggered by the presence of a third
output argument, is useful for detecting singularity or rank deficiency. At each step of the
factorization, the column of the remaining unfactored matrix with largest norm is used as
the basis for that step. This ensures that the diagonal elements of R occur in decreasing
order and that any linear dependence among the columns is almost certainly be revealed
by examining these elements. For the small example given here, the second column of C
has a larger norm than the first, so the two columns are exchanged:

[Q,R,P] = qr(C)

Q:
-0.3522 0.8398 -0.4131
-0.7044 -0.5285 -0.4739
-0.6163 0.1241 0.7777
R:
-11.3578 -8.2762
0 7.2460
0 0
P:
0 1
1 0

When the economy-size and column permutations are combined, the third output
argument is a permutation vector, rather than a permutation matrix:

[Q,R,p] = qr(C,0)

Q =
-0.3522 0.8398
-0.7044 -0.5285
-0.6163 0.1241

R =

2-31

2 Linear Algebra

2-32

-11.3578 -8.2762
0 7.2460

p:
2 1

The QR factorization transforms an overdetermined linear system into an equivalent
triangular system. The expression

norm(A*x - b)
equals
norm(Q*R*x - b)

Multiplication by orthogonal matrices preserves the Euclidean norm, so this expression is
also equal to

norm(R*x - y)

where y = Q'*b. Since the last m-n rows of R are zero, this expression breaks into two
pieces:

norm(R(1l:n,1l:n)*x - y(1l:n))
and
norm(y(n+l:m))

When A has full rank, it is possible to solve for x so that the first of these expressions is
zero. Then the second expression gives the norm of the residual. When A does not have
full rank, the triangular structure of R makes it possible to find a basic solution to the
least-squares problem.

Using Multithreaded Computation for Factorization

MATLAB software supports multithreaded computation for a number of linear algebra
and element-wise numerical functions. These functions automatically execute on multiple
threads. For a function or expression to execute faster on multiple CPUs, a number of
conditions must be true:

Factorizations

1 The function performs operations that easily partition into sections that execute
concurrently. These sections must be able to execute with little communication
between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution
outweigh the time required to partition the data and manage separate execution
threads. For example, most functions speed up only when the array contains several
thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory
access time. As a general rule, complicated functions speed up more than simple
functions.

lu and qr show significant increase in speed on large double-precision arrays (on order
of 10,000 elements).

2-33

2 Linear Algebra

Powers and Exponentials

2-34

This topic shows how to compute matrix powers and exponentials using a variety of
methods.

Positive Integer Powers

If A is a square matrix and p is a positive integer, then A™p effectively multiplies A by
itself p-1 times. For example:

A=[111
123
13 6];

A"2

ans = 3x3

3 6 10
6 14 25
10 25 46

Inverse and Fractional Powers

If A is square and nonsingular, then A~ (-p) effectively multiplies inv (A) by itself p-1
times.

A~(-3)
ans = 3x3

145.0000 -207.0000 81.0000
-207.0000 298.0000 -117.0000
81.0000 -117.0000 46.0000

MATLAB® calculates inv(A) and A™(-1) with the same algorithm, so the results are
exactly the same. Both inv(A) and A™(-1) produce warnings if the matrix is close to
being singular.

isequal(inv(A),A"(-1))

ans = logical
1

Powers and Exponentials

Fractional powers, such as A~(2/3), are also permitted. The results using fractional
powers depend on the distribution of the eigenvalues of the matrix.

A~(2/3)
ans = 3x3

0.8901 0.5882 0.3684
0.5882 1.2035 1.3799
0.3684 1.3799 3.1167

Element-by-Element Powers

The .” operator calculates element-by-element powers. For example, to square each
element in a matrix you can use A."2.

A."2

ans = 3x3
1 1 1
1 4 9
1 9 36

Square Roots

The sqrt function is a convenient way to calculate the square root of each element in a
matrix. An alternate way to do thisis A."~(1/2).

sqrt(A)
ans = 3x3

1.0000 1.0000 1.0000
1.0000 1.4142 1.7321
1.0000 1.7321 2.4495

For other roots, you can use nthroot. For example, calculate A.~(1/3).
nthroot(A,3)

ans = 3x3

2-35

2 Linear Algebra

1.0000 1.0000 1.0000
1.0000 1.2599 1.4422
1.0000 1.4422 1.8171

These element-wise roots differ from the matrix square root, which calculates a second
matrix B such that A = BB. The function sqrtm(A) computes A~ (1/2) by a more
accurate algorithm. The m in sqrtm distinguishes this function from sqrt(A), which, like
A.~(1/2), does its job element-by-element.

B = sqrtm(A)

B = 3x3
0.8775 0.4387 0.1937
0.4387 1.0099 0.8874
0.1937 0.8874 2.2749

B~2

ans = 3x3
1.0000 1.0000 1.0000
1.0000 2.0000 3.0000
1.0000 3.0000 6.0000

Scalar Bases

In addition to raising a matrix to a power, you also can raise a scalar to the power of a
matrix.

2™A
ans = 3x3

10.4630 21.6602 38.5862
21.6602 53.2807 94.6010
38.5862 94.6010 173.7734

When you raise a scalar to the power of a matrix, MATLAB uses the eigenvalues and
eigenvectors of the matrix to calculate the matrix power. If [V,D] = eig(A), then

24 =y2Py 1,

2-36

Powers and Exponentials

[V,D] = eig(A);
VH2/D*VA(-1)

ans = 3x3

10.4630 21.6602 38.5862
21.6602 53.2807 94.6010
38.5862 94.6010 173.7734

Matrix Exponentials

The matrix exponential is a special case of raising a scalar to a matrix power. The base for
a matrix exponential is Euler's number e = exp(1).

e = exp(l);
e™A

ans = 3x3
103 x

(o)

.1008 0.2407 0.4368
.2407 0.5867 1.0654
.4368 1.0654 1.9418

[oNo)

The expm function is a more convenient way to calculate matrix exponentials.
expm(A)

ans = 3x3
103 x

0.1008 0.2407 0.4368

0.2407 0.5867 1.0654
0.4368 1.0654 1.9418

The matrix exponential can be calculated in a number of ways. See “Matrix Exponentials”
on page 2-48 for more information.

2-37

2 Linear Algebra

2-38

Dealing with Small Numbers

The MATLAB functions loglp and expml calculate log(1 + x) and e* — 1 accurately for
very small values of x. For example, if you try to add a number smaller than machine
precision to 1, then the result gets rounded to 1.

log(1l+eps/2)

ans = 0

However, Loglp is able to return a more accurate answer.
loglp(eps/2)

ans = 1.1102e-16

Likewise for X — 1, if x is very small then it is rounded to zero.
exp(eps/2)-1

ans = 0

Again, expml is able to return a more accurate answer.
expml(eps/2)

ans = 1.1102e-16

Eigenvalues

Eigenvalues

In this section...

“Eigenvalue Decomposition” on page 2-39
“Multiple Eigenvalues” on page 2-40

“Schur Decomposition” on page 2-41

Eigenvalue Decomposition

An eigenvalue and eigenvector of a square matrix A are, respectively, a scalar A and a
nonzero vector v that satisfy

Av = Av.

With the eigenvalues on the diagonal of a diagonal matrix A and the corresponding
eigenvectors forming the columns of a matrix V, you have

AV = VA.
If Vis nonsingular, this becomes the eigenvalue decomposition
A = VAVL,

A good example is the coefficient matrix of the differential equation dx/dt = Ax:

A =
0 -6 -1
6 2 -16
-5 20 -10

The solution to this equation is expressed in terms of the matrix exponential x(t) = e#x(0).
The statement

lambda = eig(A)

produces a column vector containing the eigenvalues of A. For this matrix, the
eigenvalues are complex:

lambda =
-3.0710

2-39

2 Linear Algebra

-2.4645+17.60081
-2.4645-17.60081

The real part of each of the eigenvalues is negative, so e* approaches zero as t increases.
The nonzero imaginary part of two of the eigenvalues, +w, contributes the oscillatory
component, sin(wt), to the solution of the differential equation.

With two output arguments, eig computes the eigenvectors and stores the eigenvalues in
a diagonal matrix:

[V,D] = eig(A)

vV =
-0.8326 0.2003 - 0.1394i 0.2003 + 0.1394i
-0.3553 -0.2110 - 0.64471 -0.2110 + 0.64471
-0.4248 -0.6930 -0.6930
D =
-3.0710 0 0
0 -2.4645+17.60081 0
0 0 -2.4645-17.60081

The first eigenvector is real and the other two vectors are complex conjugates of each
other. All three vectors are normalized to have Euclidean length, norm(v, 2), equal to
one.

The matrix V*D*inv(V), which can be written more succinctly as V*D/V, is within
round-off error of A. And, inv (V) *A*V, or V\A*V, is within round-off error of D.

Multiple Eigenvalues

Some matrices do not have an eigenvector decomposition. These matrices are not
diagonalizable. For example:

For this matrix
[V,D] = eig(A)

produces

2-40

Eigenvalues

V =
1.0000 1.0000 -0.5571
0 0.0000 0.7428
0 0 0.3714
D =
1 0 0
0 1 0
0 0 3

There is a double eigenvalue at A = 1. The first and second columns of V are the same.
For this matrix, a full set of linearly independent eigenvectors does not exist.

Schur Decomposition

Many advanced matrix computations do not require eigenvalue decompositions. They are
based, instead, on the Schur decomposition

A = Usu ’ ,

where U is an orthogonal matrix and S is a block upper-triangular matrix with 1-by-1 and
2-by-2 blocks on the diagonal. The eigenvalues are revealed by the diagonal elements and
blocks of S, while the columns of U provide an orthogonal basis, which has much better
numerical properties than a set of eigenvectors.

For example, compare the eigenvalue and Schur decompositions of this defective matrix:
A=1[6 12 19

-9 -20 -33
4 9 15];

[V,D] = eig(A)
V =
-0.4741 + 0.0000i -0.4082 - 0.0000i -0.4082 + 0.0000i

0.8127 + 0.0000i 0.8165 + 0.00001 0.8165 + 0.00001
-0.3386 + 0.00001 -0.4082 + 0.0000i -0.4082 - 0.0000i

2-41

2 Linear Algebra

D =

-1.0000 + 0.00001
0.0000 + 0.00001
0.0000 + 0.00001

[U,S] = schur(A)

U:
-0.4741 0.6648
0.8127 0.0782
-0.3386 -0.7430
S:
-1.0000 20.7846
0 1.0000
0 0.0000

0.0000 + 0.00001
1.0000 + 0.00001
0.0000 + 0.00001

.5774
.5774
.5774

[oNoNO]

-44.6948
-0.6096
1.0000

0.0000 + 0.00001
0.0000 + 0.00001
1.0000 - 0.00001

The matrix A is defective since it does not have a full set of linearly independent
eigenvectors (the second and third columns of V are the same). Since not all columns of V
are linearly independent, it has a large condition number of about ~1e8. However, schur
is able to calculate three different basis vectors in U. Since U is orthogonal, cond (U) =

1.

The matrix S has the real eigenvalue as the first entry on the diagonal and the repeated
eigenvalue represented by the lower right 2-by-2 block. The eigenvalues of the 2-by-2
block are also eigenvalues of A:

eig(S(2:3,2:3))
ans =

1.0000 + 0.00001
1.0000 - 0.00001

Singular Values

Singular Values

A singular value and corresponding singular vectors of a rectangular matrix A are,
respectively, a scalar o and a pair of vectors u and v that satisfy

Av = gu
AHu =0V,
where A is the Hermitian transpose of A. The singular vectors u and v are typically

scaled to have a norm of 1. Also, if u and v are singular vectors of A, then -u and -v are
singular vectors of A as well.

The singular values o are always real and nonnegative, even if A is complex. With the
singular values on the diagonal of a diagonal matrix 2 and the corresponding singular
vectors forming the columns of two orthogonal matrices U and V, you obtain the

equations
AV =UZX
Ay =vs.

Since U and V are unitary matrices, multiplying the first equation by v on the right
yields the singular value decomposition equation

A=UxvH,

The full singular value decomposition of an m-by-n matrix involves an m-by-m U, an m-by-
n 2, and an n-by-n V. In other words, U and V are both square, and X is the same size as
A. If A has many more rows than columns (m > n), then the resulting m-by-m matrix U is
large. However, most of the columns in U are multiplied by zeros in 2. In this situation,
the economy-sized decomposition saves both time and storage by producing an m-by-n U,
an n-by-n 2 and the same V:

2-43

2 Linear Algebra

2-44

n
» = W
T \
m B [T
o 0 T 0
KRR
R
(m = n)

The eigenvalue decomposition is the appropriate tool for analyzing a matrix when it
represents a mapping from a vector space into itself, as it does for an ordinary differential
equation. However, the singular value decomposition is the appropriate tool for analyzing
a mapping from one vector space into another vector space, possibly with a different
dimension. Most systems of simultaneous linear equations fall into this second category.

If A is square, symmetric, and positive definite, then its eigenvalue and singular value
decompositions are the same. But, as A departs from symmetry and positive definiteness,
the difference between the two decompositions increases. In particular, the singular value
decomposition of a real matrix is always real, but the eigenvalue decomposition of a real,
nonsymmetric matrix might be complex.

For the example matrix
A =
9 4
6 8
2 7
the full singular value decomposition is
[U,S,V] = svd(A)
U=

0.6105 -0.7174 0.3355
0.6646 0.2336 -0.7098

Singular Values

0.4308

14.9359
0
0

0.6925
0.7214

0.6563

0
5.1883
0

-0.7214
0.6925

You can verify that U¥S*V' is equal to A to within round-off error. For this small problem,

the economy size decomposition is only slightly smaller.

[U,s,v] =

U=
0.6105
0.6646
0.4308

S =
14.9359
0

V =
0.6925
0.7214

Again, U*S*V"' is equal to A to within round-off error.

svd(A,0)

-0.7174
0.2336
0.6563

0
5.1883

-0.7214
0.6925

If the matrix A is large and sparse, then using svd to calculate all of the singular values
and vectors is not always practical. For example, if you need to know just a few of the
largest singular values, then calculating all of the singular values of a 5000-by-5000

2-45

2 Linear Algebra

sparse matrix is a lot of extra work. In cases where only a subset of the singular values
and vectors are required, the svds function is preferred over svd.

For a 1000-by-1000 random sparse matrix with a density of about 30%,

n
A

1000;
sprand(n,n,0.3);

the six largest singular values are

S svds (A)

S:

130.2184
16.4358
16.4119
16.3688
16.3242
16.2838

Also, the six smallest singular values are

S svds(A,6, 'smallest')

S =

.0740
.0574
.0388
.0282
.0131
.0066

[ocNoNoNoNoNo]

For smaller matrices that can fit in memory as a full matrix, full(A), using
svd (full(A)) might still be quicker than svds. However, for truly large and sparse
matrices, using svds becomes necessary.

2-46

LAPACK in MATLAB

LAPACK in MATLAB

LAPACK (Linear Algebra Package) is a library of routines that provides fast, robust
algorithms for numerical linear algebra and matrix computations. Linear algebra
functions and matrix operations in MATLAB are built on LAPACK, and they continue to
benefit from the performance and accuracy of its routines.

A Brief History

MATLAB started its life in the late 1970s as an interactive calculator built on top of
LINPACK and EISPACK, which were the state-of-the-art Fortran subroutine libraries for
matrix computation of the time. For many years MATLAB used translations to C of about a
dozen Fortran subroutines from LINPACK and EISPACK.

In the year 2000, MATLAB migrated to using LAPACK, which is the modern replacement
for LINPACK and EISPACK. It is a large, multi-author, Fortran library for numerical linear
algebra. LAPACK was originally intended for use on supercomputers because of its ability
to operate on several columns of a matrix at a time. The speed of LAPACK routines is
closely connected to the speed of the Basic Linear Algebra Subroutines (BLAS). The BLAS
version is typically hardware-specific and highly optimized.

See Also

More About
. “Call LAPACK and BLAS Functions”

External Websites
. MATLAB Incorporates LAPACK

2-47

http://www.netlib.org/lapack/
https://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html

2 Linear Algebra

Matrix Exponentials

This example shows 3 of the 19 ways to compute the exponential of a matrix.
For background on the computation of matrix exponentials, see:

Moler, C. and C. Van Loan. "Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later." SIAM Review. Vol. 45, Number 1, 2003, pp. 3-49.

Another recommended resource is the Pseudospectra Gateway website.

Start by creating a matrix A.

A=[012; 6.501; 21 0]
A = 3x3
0 1.0000 2.0000
0.5000 0 1.0000
2.0000 1.0000 0
Asave = A;

Method 1: Scaling and Squaring
expmdemol is an implementation of algorithm 11.3.1 in the book:

Golub, Gene H. and Charles Van Loan. Matrix Computations, 3rd edition. Baltimore, MD:
Johns Hopkins University Press, 1996.

% Scale A by power of 2 so that its norm is < 1/2 .
[f,e] = log2(norm(A, 'inf"));

s = max(0,e+l);

A= A/2"s;

% Pade approximation for exp(A)
X =A;

c=1/2;

E = eye(size(A)) + c*A;

D = eye(size(A)) - c*A;

q=26;

p=1

for k = 2:q

2-48

https://www.cs.cornell.edu/cv/researchpdf/19ways+.pdf
https://www.cs.cornell.edu/cv/researchpdf/19ways+.pdf
http://web.comlab.ox.ac.uk/projects/pseudospectra/

Matrix Exponentials

c=c * (g-k+1) / (k*(2*g-k+1));
X = A*X;
cX = c*X;
E =E + cX;
if p
D =D+ cX;
else
D=D - cX;
end
p=-~p;
end
= D\E;
% Undo scaling by repeated squaring
for k =
E = E*E,
end
El = E
El = 3x3

5.3091 4.0012 5.5778
2.8088 2.8845 3.1930
5.1737 4.0012 5.7132

Method 2: Taylor Series

expmdemo?2 uses the classic definition for the matrix exponential given by the power
series

1
zk_

Ais the identity matrix with the same dimensions as A. As a practical numerical method,
this approach is slow and inaccurate if norm(A) is too large.

A = Asave;

% Taylor series for exp(A)
E = zeros(size(A));

F = eye(size(A));

k =1;

2-49

2 Linear Algebra

while norm(E+F-E,1) > 0
E E + F;
F A*F/k;
k k+1;

end

E2

1]
m

E2 = 3x3
5.3091 4.0012 5.5778

2.8088 2.8845 3.1930
5.1737 4.0012 5.7132

Method 3: Eigenvalues and Eigenvectors

expmdemo3 assumes that the matrix has a full set of eigenvectors V such that

A = VDV~ L. The matrix exponential can be calculated by exponentiating the diagonal
matrix of eigenvalues:

eA=velyv !,

As a practical numerical method, the accuracy is determined by the condition of the
eigenvector matrix.

A = Asave;

eig(A);

[v,D] =
E = V * diag(exp(diag(D))) / V;

E3 = E

E3 3x3

5.3091 4.0012 5.5778

2.8088 2.8845 3.1930
5.1737 4.0012 5.7132

Compare Results

For the matrix in this example, all three methods work equally well.

2-50

Matrix Exponentials

E = expm(Asave);

errl = E -

errl = 3x3
10»14 X

0.3553
0.0888
0

err2 E -

3x3

err2
10—14 X

0

-0.0444
0.1776
err3 = E -

3x3

err3
10—13 X

-0.0711
-0.0622
-0.0711

El

E2

E3

0.1776
0.1332

[oNoNO]

-0.0444
-0.0488
-0.0533

Taylor Series Failure

-0.
-0.
-0.

.0888
.0444
.2665

.1776
.0888
.0888

0799
0933
1066

For some matrices the terms in the Taylor series become very large before they go to

zero. Consequently, expmdemo? fails.

A= [-147 72;
E1l = expmdemol(A)

El = 2x2

-0.0996
-0.1991

-192 93];

0.0747
0.1494

E2 = expmdemo2(A)

2-51

2 Linear Algebra

E2 = 2x2
106 x

-1.1985 -0.5908
-2.7438 -2.0442

E3 expmdemo3(A)

E3 = 2x2
-0.0996 0.0747
-0.1991 0.1494
Eigenvalues and Eigenvectors Failure

Here is a matrix that does not have a full set of eigenvectors. Consequently, expmdemo3
fails.

A=1[-11; 0 -11;
E1l = expmdemol(A)

El = 2x2
0.3679 0.3679
0 0.3679
E2 = expmdemo2(A)
E2 = 2x2
0.3679 0.3679
0 0.3679
E3 = expmdemo3(A)
E3 = 2x2
0.3679 0

2-52

See Also

0 0.3679

See Also

expm

2-53

2 Linear Algebra

Graphical Comparison of Exponential Functions

2-54

This example shows an interesting graphical approach for discovering whether e” is
greater than m®.

The question is: which is greater, e or m®? The easy way to find out is to type it directly at
the MATLAB® command prompt. But another way to analyze the situation is to ask a

more general question: what is the shape of the function z(x, y) = x¥ — y*?
Here is a plot of z.
0:0.16:5;

0:0.16:5;
x,yyl = meshgrid(x,y);

% Define the mesh
X =
y:
[x

% The plot

Z2z = XX.7Yyy-yy.” " XX;

h = surf(x,y,zz);

h.EdgeColor = [0.7 0.7 0.7];

view(20,50);

colormap (hsv);

title('$z = x*y-y™x$', 'Interpreter', 'latex")
xlabel('x")

ylabel('y")

hold on

Graphical Comparison of Exponential Functions

The solution of the equation x¥ — y* = 0 has a very interesting shape, and our original
question is not easily solved by inspection. Here is a plot of the xy values that yield z = 0.

c = contourc(x,y,zz,[0 0]);

listlLen = c(2,1);

xContour [c(1,2:1+listlLen) NaN c(1,3+listlLen:size(c,2))];

yContour [c(2,2:1+1listlLen) NaN c(2,3+listlLen:size(c,2))];

% Note that the NAN above prevents the end of the first contour line from being
% connected to the beginning of the second line
line(xContour,yContour, 'Color', 'k');

2-55

2 Linear Algebra

Some combinations of x and y along the black curve are integers. This next plot is of the

integer solutions to the equation x¥ — y* = 0. Notice that 2% = 42 is the only integer
solution where x # y.

plot([0:5 2 4],[0:5 4 2],'r."', 'MarkerSize',b25);

2-56

Graphical Comparison of Exponential Functions

Finally, plot the points (1,) and (e,) on the surface. The result shows that e” is indeed
larger than ® (though not by much).

e = exp(1);

plot([e pi],[pi e],'r.', 'MarkerSize',25);

plot([e pi],[pi e],'y.', 'MarkerSize',10);

text(e,3.3,'(e,pi)"', 'Color','k", ...
'HorizontalAlignment', 'left', 'VerticalAlignment', 'bottom');

text(3.3,e,'(pi,e)', 'Color', 'k', '"HorizontalAlignment"', 'left’', ...
'VerticalAlignment', 'bottom');

hold off;

2-57

2 Linear Algebra

Verify the results.

e = exp(1l);
e”pi

ans = 23.1407
pite

ans = 22.4592

2-58

See Also

See Also

exp | pi

2-59

2 Linear Algebra

Basic Matrix Operations

This example shows basic techniques and functions for working with matrices in the
MATLAB® language.

First, let's create a simple vector with 9 elements called a.
a=1[12346143475]
a = 1x9

1 2 3 4 6 4 3 4 5

Now let's add 2 to each element of our vector, a, and store the result in a new vector.

Notice how MATLAB requires no special handling of vector or matrix math.
b=a+2
b = 1Ix9

Creating graphs in MATLAB is as easy as one command. Let's plot the result of our vector
addition with grid lines.

plot(b)
grid on

2-60

Basic Matrix Operations

7.5

35

MATLAB can make other graph types as well, with axis labels.

bar(b)
xlabel('Sample #')
ylabel('Pounds"')

2-61

2 Linear Algebra

Pounds
I

1 2 3 4 5 6 7 8 9
Sample #

MATLAB can use symbols in plots as well. Here is an example using stars to mark the
points. MATLAB offers a variety of other symbols and line types.

plot(b, *")
axis([0 10 © 10])

2-62

Basic Matrix Operations

10 T T T T T T T T T

One area in which MATLAB excels is matrix computation.

Creating a matrix is as easy as making a vector, using semicolons (;) to separate the rows
of a matrix.

A=1[120;25-1; 410 -1]
A = 3x3

1 2 0

2 5 -1

4 10 1

We can easily find the transpose of the matrix A.

2-63

2 Linear Algebra

B =A'

B = 3x3
1 2 4
2 5 10
0 -1 -1

Now let's multiply these two matrices together.

Note again that MATLAB doesn't require you to deal with matrices as a collection of
numbers. MATLAB knows when you are dealing with matrices and adjusts your
calculations accordingly.

C=A*B
C = 3x3

5 12 24
12 30 59
24 59 117

Instead of doing a matrix multiply, we can multiply the corresponding elements of two
matrices or vectors using the .* operator.

C=A.*B

C = 3x3
1 4 0
4 25 -10
0 -10 1

Let's use the matrix A to solve the equation, A*x = b. We do this by using the \ (backslash)

operator.
b =11,;3;5]
b = 3x1

1

3

2-64

Basic Matrix Operations

A\b

X
Il

X = 3x1

1
0
-1

Now we can show that A*x is equal to b.

r=A*x - b
r = 3x1

0

0

0

MATLAB has functions for nearly every type of common matrix calculation.

There are functions to obtain eigenvalues ...

eig(A)
ans = 3x1

3.7321
0.2679
1.0000

... as well as the singular values.
svd(A)
ans = 3xI1

12.3171
0.5149
0.1577

2-65

2 Linear Algebra

The "poly" function generates a vector containing the coefficients of the characteristic
polynomial.

The characteristic polynomial of a matrix A is

det(AI - A)
p = round(poly(A))
p = 1x4
1 -5 5 -1

We can easily find the roots of a polynomial using the roots function.
These are actually the eigenvalues of the original matrix.
roots(p)
ans = 3x1
3.7321
1.0000
0.2679

MATLAB has many applications beyond just matrix computation.

To convolve two vectors ...

g = conv(p,p)
q = 1Ix7
1 -10 35 -52 35 -10 1

.. or convolve again and plot the result.

r = conv(p,q)
r = 1x10
1 -15 90 -278 480 -480 278 -90 15 -1

2-66

Basic Matrix Operations

plot(r);

500
400 -
300 '

200

T
",
e,

100

-100
=200
=300

=400

10

-500
2

or whos command.

whos
Size

A 3x3
B 3x3

C 3x3
a 1x9
a 3x1

Bytes

Class

72 double
72 double
72 double
72 double
24 double

Attributes

At any time, we can get a listing of the variables we have stored in memory using the who

2-67

2 Linear Algebra

b 3x1 24 double
p 1x4 32 double
q 1x7 56 double
r 1x10 80 double
X 3x1 24 double

You can get the value of a particular variable by typing its name.

A

A = 3x3
1 2 0
2 5 -1
4 10 -1

You can have more than one statement on a single line by separating each statement with
commas or semicolons.

If you don't assign a variable to store the result of an operation, the result is stored in a
temporary variable called ans.

sqrt(-1)
ans = 0.0000 + 1.00001

As you can see, MATLAB easily deals with complex numbers in its calculations.

See Also

More About

. “Array vs. Matrix Operations”

2-68

Determine Whether Matrix Is Symmetric Positive Definite

Determine Whether Matrix Is Symmetric Positive
Definite
Use chol and eig to determine whether a matrix is symmetric positive definite (a
symmetric matrix with all positive eigenvalues).

Method 1: Attempt Cholesky Factorization

The most efficient method to check whether a matrix is symmetric positive definite is to
simply attempt to use chol on the matrix. If the factorization fails, then the matrix is not
symmetric positive definite.

A=1[1-10; -150; 00 7]

A = 3x3
1 -1 0
-1 5 0
0 0 7

try chol(A)
disp('Matrix is symmetric positive definite.')

catch ME
disp('Matrix is not symmetric positive definite')
end
ans = 3x3
1.0000 -1.0000 0
0 2.0000 0
0 0 2.6458

Matrix is symmetric positive definite.

The drawback of this method is that it cannot be extended to also check whether the
matrix is symmetric positive semi-definite (where the eigenvalues can be positive or zero).

Method 2: Check Eigenvalues

While it is less efficient to use eig to calculate all of the eigenvalues and check their
values, this method is more flexible since you can also use it to check whether a matrix is

2-69

2 Linear Algebra

2-70

symmetric positive semi-definite. Still, for small matrices the difference in computation
time between the methods is negligible to check whether a matrix is symmetric positive
definite.

d = eig(A)
d = 3x1
0.7639
5.2361
7.0000
isposdef = all(d) > 0

isposdef = logical
1

You can extend this method to check whether a matrix is symmetric positive semi-definite
with the command all(d) >= 0.

Numerical Considerations

The methods outlined here might give different results for the same matrix. Since both
calculations involve round-off errors, each algorithm checks the definiteness of a matrix
that is slightly different from A. In practice, the use of a tolerance is a more robust
comparison method, since eigenvalues can be numerically zero within machine precision
and be slightly positive or slightly negative.

For example, if a matrix has an eigenvalue on the order of eps, then using the comparison
isposdef = all(d > 0) returns true, even though the eigenvalue is numerically zero
and the matrix is better classified as symmetric positive semi-definite.

To perform the comparison using a tolerance, you can use the modified commands

d = eig(A)
isposdef = all(d) > tol
issemidef = all(d) > -tol

The tolerance defines a radius around zero, and any eigenvalues within that radius are
treated as zeros. A good choice for the tolerance in most cases is

See Also

length(d)*eps(max(d)), which takes into account the magnitude of the largest
eigenvalue.

See Also
chol|eig

More About

. “Factorizations” on page 2-26

2-71

Random Numbers

* “Why Do Random Numbers Repeat After Startup?” on page 3-2
* “Create Arrays of Random Numbers” on page 3-3

* “Random Numbers Within a Specific Range” on page 3-7

* “Random Integers” on page 3-9

* “Random Numbers from Normal Distribution with Specific Mean and Variance”
on page 3-10

* “Random Numbers Within a Sphere” on page 3-12

* “Generate Random Numbers That Are Repeatable” on page 3-15

* “Generate Random Numbers That Are Different” on page 3-19

* “Managing the Global Stream” on page 3-21

* “Creating and Controlling a Random Number Stream” on page 3-28
* “Multiple Streams” on page 3-37

* “Replace Discouraged Syntaxes of rand and randn” on page 3-40

* “Controlling Random Number Generation” on page 3-45

3 Random Numbers

Why Do Random Numbers Repeat After Startup?

3-2

All the random number functions, rand, randn, randi, and randperm, draw values from
a shared random number generator. Every time you start MATLAB, the generator resets
itself to the same state. Therefore, a command such as rand(2,2) returns the same
result any time you execute it immediately following startup. Also, any script or function
that calls the random number functions returns the same result whenever you restart.

If you want to avoid repeating the same random number arrays when MATLAB restarts,
then execute the command,

rng('shuffle');

before calling rand, randn, randi, or randperm. This command ensures that you do not
repeat a result from a previous MATLAB session.

If you want to repeat a result that you got at the start of a MATLAB session without
restarting, you can reset the generator to the startup state at any time using

rng('default');

When you execute rng('default'), the ensuing random number commands return
results that match the output of a new MATLAB session. For example,

rng('default');
A = rand(2,2)

A =

0.8147 0.1270
0.9058 0.9134

The values in A match the output of rand (2, 2) whenever you restart MATLAB.

See Also

rng

Create Arrays of Random Numbers

Create Arrays of Random Numbers

In this section...

“Random Number Functions” on page 3-3

“Random Number Generators” on page 3-4

MATLAB uses algorithms to generate pseudorandom and pseudoindependent numbers.
These numbers are not strictly random and independent in the mathematical sense, but
they pass various statistical tests of randomness and independence, and their calculation
can be repeated for testing or diagnostic purposes.

The rand, randi, randn, and randperm functions are the primary functions for creating
arrays of random numbers. The rng function allows you to control the seed and algorithm
that generates random numbers.

Random Number Functions

There are four fundamental random number functions: rand, randi, randn, and
randperm. The rand function returns real numbers between 0 and 1 that are drawn from
a uniform distribution. For example,

rl = rand(1000,1);

rlis a 1000-by-1 column vector containing real floating-point numbers drawn from a
uniform distribution. All the values in r1 are in the open interval (0, 1). A histogram of
these values is roughly flat, which indicates a fairly uniform sampling of numbers.

The randi function returns double integer values drawn from a discrete uniform
distribution. For example,

r2 = randi(10,1000,1);

r2 is a 1000-by-1 column vector containing integer values drawn from a discrete uniform
distribution whose range is 1,2,...,10. A histogram of these values is roughly flat, which
indicates a fairly uniform sampling of integers between 1 and 10.

The randn function returns arrays of real floating-point numbers that are drawn from a
standard normal distribution. For example,

r3 = randn(1000,1);

3-3

3 Random Numbers

3-4

r3is a 1000-by-1 column vector containing numbers drawn from a standard normal
distribution. A histogram of r3 looks like a roughly normal distribution whose mean is 0
and standard deviation is 1.

You can use the randperm function to create arrays of random integer values that have
no repeated values. For example,

r4 = randperm(15,5);

r4 is a 1-by-5 array containing randomly selected integer values on the closed interval,
[1, 15]. Unlike randi, which can return an array containing repeated values, the array
returned by randperm has no repeated values.

Successive calls to any of these functions return different results. This behavior is useful
for creating several different arrays of random values.

Random Number Generators

MATLAB offers several generator algorithm options, which are summarized in the
following table.

Keyword Generator Multiple Stream Approximate
and Substream Period In Full
Support Precision
mt19937ar Mersenne twister No MR |
(used by default
stream at MATLAB
startup)
dsfmt19937 SIMD-oriented fast No 2199371
Mersenne twister
mcg16807 Multiplicative No 2312
congruential
generator
mlfg6331 64 Multiplicative lagged Yes 2124 (251 streams of
Fibonacci generator length 27%)
mrg32k3a Combined multiple Yes 2191 (263 streams of
recursive generator length 2127)

See Also

Keyword Generator Multiple Stream Approximate
and Substream Period In Full
Support Precision
philox4x32 10 Philox 4x32 Yes 2193 (264 streams of
generator with 10 length 2129)
rounds
threefry4x64 20 Threefry 4x64 Yes 2514 (2256 streams of
generator with 20 length 22°8)
rounds
shr3cong Shift-register No e
generator summed
with linear
congruential
generator
swb2712 Modified subtract No A

with borrow
generator

Use the rng function to set the seed and generator used by the rand, randi, randn, and
randperm functions. For example, rng('shuffle', 'philox"') seeds the Philox 4x32
generator based on the current time, producing a different sequence of numbers each

time it is called.

For more information, see “Controlling Random Number Generation” on page 3-45.

See Also

rand | randi | randn | randperm | rng

Related Examples

. “Controlling Random Number Generation” on page 3-45

. “Generate Random Numbers That Are Repeatable” on page 3-15

. “Generate Random Numbers That Are Different” on page 3-19

. “Random Numbers Within a Specific Range” on page 3-7

. “Random Integers” on page 3-9

3 Random Numbers

. “Random Numbers from Normal Distribution with Specific Mean and Variance” on
page 3-10

3-6

Random Numbers Within a Specific Range

Random Numbers Within a Specific Range

This example shows how to create an array of random floating-point numbers that are
drawn from a uniform distribution in the open interval (50, 100).

By default, rand returns normalized values (between 0 and 1) that are drawn from a
uniform distribution. To change the range of the distribution to a new range, (a, b),
multiply each value by the width of the new range, (b - a) and then shift every value by a.

First, initialize the random number generator to make the results in this example
repeatable.

rng (0, 'twister');

Create a vector of 1000 random values. Use the rand function to draw the values from a
uniform distribution in the open interval, (50,100).

50;
100;
(b-a).*rand(1000,1) + a;

a
b
r

Verify the values in r are within the specified range.

[min(r) max(r)]

r_range

r_range

50.0261 99.9746

The result is in the open interval, (50,100).

Note Some combinations of a and b make it theoretically possible for your results to
include a or b. In practice, this is extremely unlikely to happen.

See Also

rng

Related Examples

. “Random Numbers from Normal Distribution with Specific Mean and Variance” on
page 3-10

3 Random Numbers

. “Random Numbers Within a Sphere” on page 3-12
. “Create Arrays of Random Numbers” on page 3-3

3-8

Random Integers

Random Integers

This example shows how to create an array of random integer values that are drawn from
a discrete uniform distribution on the set of numbers -10, -9,...,9, 10.

The simplest randi syntax returns double-precision integer values between 1 and a
specified value, imax. To specify a different range, use the imin and imax arguments
together.

First, initialize the random number generator to make the results in this example
repeatable.

rng (0, 'twister');

Create a 1-by-1000 array of random integer values drawn from a discrete uniform
distribution on the set of numbers -10, -9,...,9, 10. Use the syntax, randi([imin
imax],m,n).

r = randi([-10 10],1,1000);
Verify that the values in r are within the specified range.

r_range

[min(r) max(r)]

Ix2

r range

-10 10

See Also

randi | rng

Related Examples

. “Create Arrays of Random Numbers” on page 3-3

3-9

3 Random Numbers

Random Numbers from Normal Distribution with Specific
Mean and Variance

This example shows how to create an array of random floating-point numbers that are
drawn from a normal distribution having a mean of 500 and variance of 25.

The randn function returns a sample of random numbers from a normal distribution with
mean 0 and variance 1. The general theory of random variables states that if x is a
random variable whose mean is p, and variance is o2, then the random variable, y,

defined by y = ax + b,where a and b are constants, has mean py, = aji, + b and variance

0)2, = a%0? . You can apply this concept to get a sample of normally distributed random

numbers with mean 500 and variance 25.

First, initialize the random number generator to make the results in this example
repeatable.

rng(0, 'twister"');

Create a vector of 1000 random values drawn from a normal distribution with a mean of
500 and a standard deviation of 5.

a=>5;
b = 500;
y = a.*randn(1000,1) + b;

Calculate the sample mean, standard deviation, and variance.
stats = [mean(y) std(y) var(y)]
stats = Ix3

499.8368 4.9948 24.9483

The mean and variance are not 500 and 25 exactly because they are calculated from a
sampling of the distribution.

See Also

randn | rng

3-10

See Also

Related Examples

. “Random Numbers Within a Specific Range” on page 3-7
. “Random Numbers Within a Sphere” on page 3-12
. “Create Arrays of Random Numbers” on page 3-3

3-11

3 Random Numbers

Random Numbers Within a Sphere

This example shows how to create random points within the volume of a sphere, as
described by Knuth [1]. The sphere in this example is centered at the origin and has a
radius of 3.

One way to create points inside a sphere is to specify them in spherical coordinates. Then
you can convert them to Cartesian coordinates to plot them.

First, initialize the random number generator to make the results in this example
repeatable.

rng (0, 'twister")

Calculate an elevation angle for each point in the sphere. These values are in the open
interval, (— /2, m/2), but are not uniformly distributed.

rvals = 2*rand(1000,1)-1;
elevation = asin(rvals);

Create an azimuth angle for each point in the sphere. These values are uniformly
distributed in the open interval, (0, 2m).

azimuth = 2*pi*rand(1000,1);

Create a radius value for each point in the sphere. These values are in the open interval,
(0, 3), but are not uniformly distributed.

radii = 3*(rand(1000,1).7(1/3));

Convert to Cartesian coordinates and plot the result.
[x,y,z] = sph2cart(azimuth,elevation,radii);
figure

plot3(x,y,z,"'.")
axis equal

3-12

Random Numbers Within a Sphere

If you want to place random numbers on the surface of the sphere, then specify a
constant radius value to be the last input argument to sph2cart. In this case, the value is
3.

[x,y,z] = sph2cart(azimuth,elevation,3);

References

[1] Knuth, D. The Art of Computer Programming. Vol. 2, 3rd ed. Reading, MA: Addison-
Wesley Longman, 1998, pp. 134-136.

3-13

3 Random Numbers

See Also
rand | rng | sph2cart

Related Examples
. “Random Numbers Within a Specific Range” on page 3-7

. “Random Numbers from Normal Distribution with Specific Mean and Variance” on
page 3-10
. “Create Arrays of Random Numbers” on page 3-3

3-14

Generate Random Numbers That Are Repeatable

Generate Random Numbers That Are Repeatable

Specify the Seed

This example shows how to repeat arrays of random numbers by specifying the seed first.
Every time you initialize the generator using the same seed, you always get the same
result.

First, initialize the random number generator to make the results in this example
repeatable.

rng('default');

Now, initialize the generator using a seed of 1.
rng(1);

Then, create an array of random numbers.

A = rand(3,3)

A =

0.4170 0.3023 0.1863
0.7203 0.1468 0.3456
0.0001 0.0923 0.3968

Repeat the same command.

A = rand(3,3)

A =
0.5388 0.2045 0.6705
0.4192 0.8781 0.4173
0.6852 0.0274 0.5587

The first call to rand changed the state of the generator, so the second result is different.

Now, reinitialize the generator using the same seed as before. Then reproduce the first
matrix, A.

rng(1l);
A = rand(3,3)

3-15

3 Random Numbers

3-16

0.4170 0.3023 0.1863
0.7203 0.1468 0.3456
0.0001 0.0923 0.3968

In some situations, setting the seed alone will not guarantee the same results. This is
because the generator that the random number functions draw from might be different
than you expect when your code executes. For long-term repeatability, specify the seed
and the generator type together.

For example, the following code sets the seed to 1 and the generator to Mersenne
Twister.

rng(l, 'twister"');
Set the seed and generator type together when you want to:

* Ensure that the behavior of code you write today returns the same results when you
run that code in a future MATLAB release.

* Ensure that the behavior of code you wrote in a previous MATLAB release returns the
same results using the current release.

* Repeat random numbers in your code after running someone else’s random number
code.

See the rng reference page for a list of available generators.

Save and Restore the Generator Settings

This example shows how to create repeatable arrays of random numbers by saving and
restoring the generator settings. The most common reason to save and restore generator

settings is to reproduce the random numbers generated at a specific point in an algorithm

or iteration. For example, you can use the generator settings as an aid in debugging.

First, initialize the random number generator to make the results in this example
repeatable.

rng(l, 'twister');
Save the generator settings in a structure s.

S = rng;

See Also

Create an array of random integer values between 1 and 10.

A

randi(10,3,3)

A = 3x3

5
8
1

=N B
A AN

Repeat the same command.

A = randi(10,3,3)
A = 3x3
6 3 7
5 9 5
7 1 6

The first call to randi changed the state of the generator, so the second result is
different.

Now, return the generator to the original state stored in s and reproduce the first array A.

rng(s);

A = randi(10,3,3)

A = 3x3
5 4 2
8 2 4
1 1 4

Unlike reseeding, which reinitializes the generator, this approach allows you to save and
restore the generator settings at any point.

See Also

rng

3-17

3 Random Numbers

Related Examples
. “Generate Random Numbers That Are Different” on page 3-19
. “Controlling Random Number Generation” on page 3-45

3-18

Generate Random Numbers That Are Different

Generate Random Numbers That Are Different

This example shows how to avoid repeating the same random number arrays when
MATLAB restarts. This technique is useful when you want to combine results from the
same random number commands executed different MATLAB sessions.

All the random number functions, rand, randn, randi, and randperm, draw values from
a shared random number generator. Every time you start MATLAB, the generator resets
itself to the same state. Therefore, a command such as rand (2, 2) returns the same
result any time you execute it immediately following startup. Also, any script or function
that calls the random number functions returns the same result whenever you restart.

One way to get different random numbers is to initialize the generator using a different
seed every time. Doing so ensures that you don’t repeat results from a previous session.

Execute the rng('shuffle') command once in your MATLAB session before calling any
of the random number functions.

rng('shuffle')

You can execute this command in a MATLAB Command Window, or you can add it to your
startup file, which is a special script that MATLAB executes every time you restart.

Now, execute a random number command.
A = rand(2,2);

Each time you call rng('shuffle'), it reseeds the generator using a different seed
based on the current time.

Alternatively, specify different seeds explicitly. For example,

rng(1);
A = rand(2,2);
rng(2);
B = rand(2,2);

Arrays A and B are different because the generator is initialized with a different seed
before each call to the rand function.

Note Frequent reseeding of the generator does not improve the statistical properties of
the output and does not make the output more random in any real sense. Reseeding can

3-19

3 Random Numbers

3-20

be useful when you restart MATLAB or before you run a large calculation involving
random numbers. However, reseeding the generator too frequently within a session is not

a good idea because the statistical properties of your random numbers can be adversely
affected.

See Also

rng

Related Examples

. “Generate Random Numbers That Are Repeatable” on page 3-15
. “Controlling Random Number Generation” on page 3-45

. “Startup Options in MATLAB Startup File”

Managing the Global Stream

Managing the Global Stream

rand, randn, and randi draw random numbers from an underlying random number
stream, called the global stream. The rng function provides a simple way to control the
global stream. For more comprehensive control, the RandStream class allows you to get
a handle to the global stream and control random number generation.

Get a handle to the global stream as follows:

globalStream
globalStream

RandStream.getGlobalStream

mt19937ar random stream (current global stream)
Seed: 0
NormalTransform: Ziggurat

Return the properties of the stream with the get method:

get(globalStream)
Type: 'mtl9937ar’
NumStreams: 1
StreamIndex: 1
Substream: 1
Seed: 0
State: [625x1 uint32]
NormalTransform: 'Ziggurat'
Antithetic: 0
FullPrecision: 1

Now, use the rand function to generate uniform random values from the global stream.
rand(1,5);

Use the randn and randi functions to generate normal random values and integer
random values from the global stream.

A
A

randi(100,1,5);
randn(1,5);

The State property is the internal state of the generator. You can save the State of
globalStream.

myState = globalStream.State;

3-21

3 Random Numbers

3-22

Using myState, you can restore the state of globalStream and reproduce previous
results.

myState = globalStream.State;
A = rand(1,100);
globalStream.State = myState;
B=rand(1,100);

isequal(A,B)

ans =
1

rand, randi, and randn access the global stream. Since all of these functions access the
same underlying stream, a call to one affects the values produced by the others at
subsequent calls.

globalStream.State = myState;
A = rand(1,100);
globalStream.State = myState;

randi(100);
B = rand(1,100);
isequal(A,B)

ans =
0

The global stream is a handle object of the RandStream class.
RandStream.getGlobalStream returns a handle. The properties of the global stream
can be viewed or modified from any handle to the stream.

streaml=RandStream.getGlobalStream;
stream2=RandStream.getGlobalStream;
streaml.NormalTransform="'Polar';
stream2.NormalTransform

ans =

Polar

The following table shows the methods available for the RandStream class. Static
methods are indicated with the syntax RandStream.methodName.

Managing the Global Stream

Method Description

RandStream Create a random number stream

RandStream.create Create multiple independent random
number streams

get Get the properties of a random stream

RandStream.list List available random number generator
algorithms

RandStream.getGlobalStream Get the global random number stream

RandStream.setGlobalStream Set the global random number stream

set Set a property of a random stream

reset Reset a stream to its initial internal state

rand Generate pseudorandom numbers from a
uniform distribution

randn Generate pseudorandom numbers from a
standard normal distribution

randi Generate pseudorandom integers from a
uniform discrete distribution

randperm Random permutation of a set of values

The properties of a random stream are given

the following table.

Property Description

Type (Read-only) Generator algorithm used by
the stream. RandStream. list specifies
the possible generators.

Seed (Read-only) Seed value used to create the
stream.

NumStreams (Read-only) Number of streams in the
group in which the current stream was
created.

StreamIndex (Read-only) Index of the current stream

from among the group of streams with
which the current stream was created.

3-23

3 Random Numbers

Property Description

State Internal state of the generator. Do not
depend on the format of this property. The
value you assign to S.State must be a
value previously read from S.State.

Substream Index of the substream to which the stream
is currently set. The default is 1. Multiple
substreams are not supported by all
generator types; the multiplicative lagged
Fibonacci generator (mlfg6331 64) and
combined multiple recursive generator
(mrg32k3a) support substreams.

NormalTransform Transformation algorithm used by
randn(s, ...) togenerate normal
pseudorandom values. Possible values are
'Ziggurat', 'Polar', or 'Inversion’.

Antithetic Logical value indicating whether S
generates antithetic pseudorandom values.
For uniform values, these are the usual
values subtracted from 1. The default is
false.

FullPrecision Logical value indicating whether s
generates values using its full precision.
Some generators can create pseudorandom
values faster, but with fewer random bits, if
FullPrecision is false. The default is
true.

Suppose you want to repeat a simulation. The RandSt ream class gives you several ways
to replicate output. As shown in the previous example, you can save the state of the global
stream.

myState=GlobalStream.State;
A=rand(1,100);
GlobalStream.State=myState;
B=rand(1,100);

isequal(A,B)

ans =

3-24

Managing the Global Stream

1

You can also reset a stream to its initial settings with the method reset.

reset (GlobalStream)
A=rand(1,100);
reset (GlobalStream)
B=rand(1,100);
isequal(A,B)

ans =

Random Number Data Types

rand and randn generate values in double precision by default.

GlobalStream=RandStream.getGlobalStream;
myState=GlobalStream.State;

A=rand(1,5);

class(A)

ans =

double

To specify the class as double explicitly:
GlobalStream.State=myState;
B=rand(1,5, 'double');

class(B)

ans =

double
isequal(A,B)

ans =
1

rand and randn will also generate values in single precision.

3-25

3 Random Numbers

GlobalStream.State=myState;
A=rand(1,5,'single');
class(A)

ans =

single

The values are the same as if you had cast the double precision values from the previous
example. The random stream that the functions draw from advances the same way
regardless of what class of values is returned.

A,B
A =

0.8235 0.6948 0.3171 0.9502 0.0344

0.8235 0.6948 0.3171 0.9502 0.0344

randi supports both integer types and single or double precision.

A=randi([1 10]1,1,5, 'double');
class(A)

ans =
double

B=randi([1 10],1,5,'uint8');
class(B)

ans =

uint8

See Also

rng

3-26

See Also

Related Examples
. “Multiple Streams” on page 3-37

. “Creating and Controlling a Random Number Stream” on page 3-28
. “Controlling Random Number Generation” on page 3-45
. “Create Arrays of Random Numbers” on page 3-3

3-27

3 Random Numbers

Creating and Controlling a Random Number Stream

3-28

In this section...

“Substreams” on page 3-29

“Choosing a Random Number Generator” on page 3-30

The RandStream class allows you to create a random number stream. This is useful for
several reasons. For example, you might want to generate random values without
affecting the state of the global stream. You might want separate sources of randomness
in a simulation. Or you may need to use a different generator algorithm than the one
MATLAB software uses at startup. With the RandSt ream constructor, you can create your
own stream, set the writable properties, and use it to generate random numbers. You can
control the stream you create the same way you control the global stream. You can even
replace the global stream with the stream you create.

To create a stream, use the RandStream constructor.

myStream=RandStream('mlfg6331 64');
rand(myStream,1,5)

ans =
0.6530 0.8147 0.7167 0.8615 0.0764

The random stream myStream acts separately from the global stream. The functions
rand, randn, and randi will continue to draw from the global stream, and will not affect
the results of the RandStream methods rand, randn and randi applied to myStream.

You can make myStream the global stream using the RandStream.setGlobalStream
method.

RandStream.setGlobalStream(myStream)
RandStream.getGlobalStream

ans =
mlfg6331 64 random stream (current global stream)
Seed: 0
NormalTransform: Ziggurat

RandStream.getGlobalStream==myStream

Creating and Controlling a Random Number Stream

ans =

Substreams

You may want to return to a previous part of a simulation. A random stream can be
controlled by having it jump to fixed checkpoints, called substreams. The Substream
property allows you to jump back and forth among multiple substreams. To use the
Substream property, create a stream using a generator that supports substreams. (See
“Choosing a Random Number Generator” on page 3-30 for a list of generator algorithms
and their properties.)

stream=RandStream('mlfg6331 64');
RandStream.setGlobalStream(stream)

The initial value of Substreamis 1.
stream.Substream
ans =

1

Substreams are useful in serial computation. Substreams can recreate all or part of a
simulation by returning to a particular checkpoint in stream. For example, they can be
used in loops.

for i=1:5
stream.Substream=i;
rand(1,1i)

end

ans =
0.6530

ans =
0.3364 0.8265

ans =
0.9539 0.6446 0.4913

3-29

3 Random Numbers

3-30

ans =
0.0244 0.5134 0.6305 0.6534

ans =
0.3323 0.9296 0.5767 0.1233 0.6934

Each of these substreams can reproduce its loop iteration. For example, you can return to
the 5th substream. The result will return the same values as the 5th output above.

stream.Substream=5;
rand(1,5)

ans =

0.3323 0.9296 0.5767 0.1233 0.6934

Choosing a Random Number Generator

MATLAB offers several generator algorithm options. The following table summarizes the
key properties of the available generator algorithms and the keywords used to create
them. To return a list of all the available generator algorithms, use the

RandStream. list method.

Keyword Generator Multiple Stream Approximate
and Substream Period In Full
Support Precision
mt19937ar Mersenne twister No MR |
(used by default
stream at MATLAB
startup)
dsfmt19937 SIMD-oriented fast No 2199371
Mersenne twister
mcg16807 Multiplicative No 2312
congruential
generator
mlfg6331 64 Multiplicative lagged Yes 2124 (251 streams of
Fibonacci generator length 27%)
mrg32k3a Combined multiple Yes 2191 (263 streams of
recursive generator length 2127)

Creating and Controlling a Random Number Stream

Keyword Generator Multiple Stream Approximate
and Substream Period In Full
Support Precision
philox4x32 10 Philox 4x32 Yes 2193 (264 streams of
generator with 10 length 2129)
rounds
threefry4x64 20 Threefry 4x64 Yes 2514 (2256 streams of
generator with 20 length 22°8)
rounds
shr3cong Shift-register No e

generator summed
with linear
congruential
generator

swh2712 Modified subtract No 21492
with borrow
generator

The generators mcgl16807, shr3cong, and swb2712 provide for backwards compatibility
with earlier versions of MATLAB. mt19937ar and dsfmt19937 are designed primarily
for sequential applications. The remaining generators provide explicit support for parallel
random number generation.

Depending on the application, some generators may be faster or return values with more
precision. All pseudorandom number generators are based on deterministic algorithms,
and all will fail a sufficiently specific statistical test for randomness. One way to check the
results of a Monte Carlo simulation is to rerun the simulation with two or more different
generator algorithms, and MATLAB software's choice of generators provide you with the
means to do that. Although it is unlikely that your results will differ by more than Monte
Carlo sampling error when using different generators, there are examples in the
literature where this kind of validation has turned up flaws in a particular generator
algorithm (see [13] for an example).

Generator Algorithms

mt19937ar

The Mersenne Twister, as described in [11], has period 219937 _ 1 and each u(o,1)
value is created using two 32-bit integers. The possible values are multiples of 2753 in

3-31

3 Random Numbers

3-32

the interval (0,1). This generator does not support multiple streams or substreams.
The randn algorithm used by default for mt19937ar streams is the ziggurat
algorithm [7], but with the mt19937ar generator underneath. Note: This generator is
identical to the one used by the rand function beginning in MATLAB Version 7,
activated by rand('twister',s).

dstmt19937

The Double precision SIMD-oriented Fast Mersenne Twister, as described in [12], is a
faster implementation of the Mersenne Twister algorithm. The period is 219937 _ 1

and the possible values are multiples of 2752 in the interval (0,1). The generator
produces double precision values in [1,2) natively, which are transformed to create
U(0,1) values. This generator does not support multiple streams or substreams.

mcgl6807

A 32-bit multiplicative congruential generator, as described in [14], with multiplier

a =7 modulo m = 23! — 1. This generator has a period of 23! — 2 and does not
support multiple streams or substreams. Each U(0, 1) value is created using a single

-1
32-bit integer from the generator; the possible values are all multiples of (231 -1)

strictly within the interval (0,1). The randn algorithm used by default for mcg16807
streams is the polar algorithm (described in [1]). Note: This generator is identical to
the one used beginning in MATLAB Version 4 by both the rand and randn functions,
activated using rand('seed',s) or randn('seed',s).

mlfg6331 64

A 64-bit multiplicative lagged Fibonacci generator, as described in [10], with lags
[=63, k = 31. This generator is similar to the MLFG implemented in the SPRNG

package. It has a period of approximately 2124 1t supports up to 261 parallel streams,
via parameterization, and 2°! substreams each of length 272, Each U(0, 1) value is
created using one 64-bit integer from the generator; the possible values are all

multiples of 27 strictly within the interval (0,1). The randn algorithm used by
default for m1fg6331 64 streams is the ziggurat algorithm [7], but with the
mlfg6331 64 generator underneath.

mrg32k3a

A 32-bit combined multiple recursive generator, as described in [2]. This generator is
similar to the CMRG implemented in the RngStreams package. It has a period of 2191
and supports up to 263 parallel streams via sequence splitting, each of length 2127 1t
also supports 2°! substreams, each of length 276 Each U(0, 1) value is created using

Creating and Controlling a Random Number Stream

two 32-bit integers from the generator; the possible values are multiples of 2753

strictly within the interval (0,1). The randn algorithm used by default for mrg32k3a
streams is the ziggurat algorithm [7], but with the mrg32k3a generator underneath.

philox4x32 10

A 4x32 generator with 10 rounds as described in [15]. This generator uses a Feistel
network and integer multiplication, and is specifically designed for high performance
in highly parallel systems such as GPUs. It has a period of 2193 (26 streams of length
2129)‘

threefry4x64 20
A 4x64 generator with 20 rounds as described in [15]. This generator is a non-

cryptographic adaptation of the Threefish block cipher from the Skein Hash Function.
It has a period of 2514 (2256 streams of length 228),

shr3cong
Marsaglia's SHR3 shift-register generator summed with a linear congruential
generator with multiplier a = 69069, addend b = 1234567, and modulus 2~ >, SHR3

is a 3-shift-register generator defined as u = u(I + L13)(I + R17)(I + L5), where I is the
identity operator, L is the left shift operator, and R is the right shift operator. The
combined generator (the SHR3 part is described in [7]) has a period of approximately

254 This generator does not support multiple streams or substreams. Each U(0,1)
value is created using one 32-bit integer from the generator; the possible values are

all multiples of 2732 strictly within the interval (0,1). The randn algorithm used by
default for shr3cong streams is the earlier form of the ziggurat algorithm [9], but
with the shr3cong generator underneath. This generator is identical to the one used
by the randn function beginning in MATLAB Version 5, activated using
randn('state',s).

Note The SHR3 generator used in [6] (1999) differs from the one used in [7] (2000).
MATLAB uses the most recent version of the generator, presented in [7].

swb2712

A modified Subtract-with-Borrow generator, as described in [8]. This generator is

similar to an additive lagged Fibonacci generator with lags 27 and 12, but is modified

to have a much longer period of approximately 21492 The generator works natively in

double precision to create U(0,1) values, and all values in the open interval (0,1) are
possible. The randn algorithm used by default for swb2712 streams is the ziggurat

3-33

3 Random Numbers

3-34

algorithm [7], but with the swb2712 generator underneath. Note: This generator is
identical to the one used by the rand function beginning in MATLAB Version 5,
activated using rand('state',s).

Transformation Algorithms

Inversion

Computes a normal random variate by applying the standard normal inverse
cumulative distribution function to a uniform random variate. Exactly one uniform
value is consumed per normal value.

Polar

The polar rejection algorithm, as described in [1]. Approximately 1.27 uniform values
are consumed per normal value, on average.

Ziggurat

The ziggurat algorithm, as described in [7]. Approximately 2.02 uniform values are
consumed per normal value, on average.

References
[1] Devroye, L. Non-Uniform Random Variate Generation, Springer-Verlag, 1986.

[2] LEcuyer, P. “Good Parameter Sets for Combined Multiple Recursive Random Number
Generators”, Operations Research, 47(1): 159-164. 1999.

[3] L'Ecuyer, P. and S. Coté. “Implementing A Random Number Package with Splitting
Facilities”, ACM Transactions on Mathematical Software, 17: 98-111. 1991.

[4] L'Ecuyer, P. and R. Simard. “TestU01: A C Library for Empirical Testing of Random
Number Generators,” ACM Transactions on Mathematical Software, 33(4): Article
22.2007.

[5] L'Ecuyer, P, R. Simard, E. J. Chen, and W. D. Kelton. “An Objected-Oriented Random-
Number Package with Many Long Streams and Substreams.” Operations
Research, 50(6):1073-1075. 2002.

[6] Marsaglia, G. “Random numbers for C: The END?” Usenet posting to sci.stat.math.
1999. Available online at https://groups.google.com/group/sci.crypt/
browse thread/
thread/ca8682a4658al124d/.

https://groups.google.com/group/sci.crypt/browse_thread/thread/ca8682a4658a124d/
https://groups.google.com/group/sci.crypt/browse_thread/thread/ca8682a4658a124d/
https://groups.google.com/group/sci.crypt/browse_thread/thread/ca8682a4658a124d/
https://groups.google.com/group/sci.crypt/browse_thread/thread/ca8682a4658a124d/

See Also

[7] Marsaglia G., and W. W. Tsang. “The ziggurat method for generating random
variables.” Journal of Statistical Software, 5:1-7. 2000. Available online at
https://www.jstatsoft.org/v05/108.

[8] Marsaglia, G., and A. Zaman. “A new class of random number generators.” Annals of
Applied Probability 1(3):462-480. 1991.

[9] Marsaglia, G., and W. W. Tsang. “A fast, easily implemented method for sampling from
decreasing or symmetric unimodal density functions.” SIAM J.Sci.Stat.Comput.
5(2):349-359. 1984.

[10] Mascagni, M., and A. Srinivasan. “Parameterizing Parallel Multiplicative Lagged-
Fibonacci Generators.” Parallel Computing, 30: 899-916. 2004.

[11] Matsumoto, M., and T. Nishimura.“Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudorandom Number Generator.” ACM Transactions
on Modeling and Computer Simulation, 8(1):3-30. 1998.

[12] Matsumoto, M., and M. Saito.”A PRNG Specialized in Double Precision Floating Point
Numbers Using an Affine Transition.” Monte Carlo and Quasi-Monte Carlo
Methods 2008, 10.1007/978-3-642-04107-5 38. 2009.

[13] Moler, C.B. Numerical Computing with MATLAB. SIAM, 2004. Available online at
https://www.mathworks.com/moler

[14] Park, S.K., and K.W. Miller. “Random Number Generators: Good Ones Are Hard to
Find.” Communications of the ACM, 31(10):1192-1201. 1998.

[15] Salmon, J. K., M. A. Moraes, R. O. Dror, and D. E. Shaw. "Parallel Random Numbers:
As Easy as 1, 2, 3." In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC11). New York,
NY: ACM, 2011.

See Also

rng

Related Examples
. “Managing the Global Stream” on page 3-21

3-35

https://www.jstatsoft.org/v05/i08
https://www.mathworks.com/moler.html

3 Random Numbers

. “Multiple Streams” on page 3-37
. “Controlling Random Number Generation” on page 3-45
. “Create Arrays of Random Numbers” on page 3-3

3-36

Multiple Streams

Multiple Streams

MATLAB software includes generator algorithms that allow you to create multiple
independent random number streams. The RandStream. create factory method allows
you to create three streams that have the same generator algorithm and seed value but
are statistically independent.

[s1l,s2,s3]=RandStream.create('mlfg6331 64", 'NumStreams',3)
sl =

mlfg6331 64 random stream
StreamIndex: 1
NumStreams: 3
Seed: 0
NormalTransform: Ziggurat

s2 =

mlfg6331 64 random stream
StreamIndex: 2
NumStreams: 3
Seed: 0
NormalTransform: Ziggurat

s3 =

mlfg6331 64 random stream
StreamIndex: 3
NumStreams: 3
Seed: 0
NormalTransform: Ziggurat

As evidence of independence, you can see that these streams are largely uncorrelated.

rl=rand(sl,100000,1
r2=rand(s2,100000,1
r3=rand(s3,100000,1
corrcoef([rl,r2,r3]

’
’
’

—_— — — ~—

ans =

1.0000 -0.0017 -0.0010

3-37

3 Random Numbers

3-38

-0.0017 1.0000 -0.0050
-0.0010 -0.0050 1.0000

By using different seeds, you can create streams that return different values and act
separately from one another.

s1l=RandStream('mt19937ar', 'seed',1);
s2=RandStream('mt19937ar', 'seed',2);
s3=RandStream('mt19937ar', 'seed’',3);
Seed values must be integers between 0 and 232
typically return values that are uncorrelated.

— 1. With different seeds, streams

rl=rand(sl,100000,1
r2=rand(s2,100000,1
r3=rand(s3,100000,1
corrcoef([rl,r2,r3]

’
’
’

—_— — — ~—

ans =

1.0000 0.0030 0.0045
0.0030 1.0000 -0.0015
0.0045 -0.0015 1.0000

For generator types that do not explicitly support independent streams, different seeds
provide a method to create multiple streams. However, using a generator specifically
designed for multiple independent streams is a better option, as the statistical properties
across streams are better understood.

Depending on the application, it might be useful to create only some of the streams in a
set of independent streams. The StreamIndex property returns the index of a specified
stream from a set of factory-generated streams.

numLabs=256;

labIndex=4;

sl=RandStream.create('mlfg6331 64",
"NumStreams',numLabs, 'StreamIndices', labIndex)

sl=
mlfg6331 64 random stream
StreamIndex: 4
NumStreams: 256
Seed: 0
NormalTransform: Ziggurat

See Also

Multiple streams, since they are statistically independent, can be used to verify the
precision of a simulation. For example, a set of independent streams can be used to
repeat a Monte Carlo simulation several times in different MATLAB sessions or on
different processors and determine the variance in the results. This makes multiple
streams useful in large-scale parallel simulations.

Note Not all generators algorithms support multiple streams. See the table of generator
algorithms in “Choosing a Random Number Generator” on page 3-30 for a summary of
generator properties.

See Also

rng

Related Examples
. “Managing the Global Stream” on page 3-21

. “Controlling Random Number Generation” on page 3-45
. “Choosing a Random Number Generator” on page 3-30
. “Create Arrays of Random Numbers” on page 3-3

3-39

3 Random Numbers

Replace Discouraged Syntaxes of rand and randn

3-40

In this section...

“Description of the Discouraged Syntaxes” on page 3-40
“Description of Replacement Syntaxes” on page 3-40

“Replacement Syntaxes for Initializing the Generator with an Integer Seed” on page 3-
41

“Replacement Syntaxes for Initializing the Generator with a State Vector” on page 3-42
“If You Are Unable to Upgrade from Discouraged Syntax” on page 3-43

Description of the Discouraged Syntaxes

In earlier versions of MATLAB, you controlled the random number generator used by the
rand and randn functions with the 'seed’', 'state’ or 'twister' inputs. For
example:

rand('seed',sd)
randn('seed',sd)
rand('state',s)
randn('state',s)
rand('twister',5489)

These syntaxes referred to different types of generators, and they are no longer
recommended for the following reasons:

* Theterms 'seed' and 'state’' are misleading names for the generators.
» All of the generators except 'twister' are flawed.
* They unnecessarily use different generators for rand and randn.

To assess the impact of replacing discouraged syntaxes in your existing code, execute the
following commands at the start of your MATLAB session:

warning('on', '"MATLAB:RandStream:ActivatinglLegacyGenerators')
warning('on', '"MATLAB:RandStream:ReadingInactivelegacyGeneratorState')

Description of Replacement Syntaxes

Use the rng function to control the shared generator used by rand, randn, randi and all
other random number generation functions like randperm, sprand, and so on. To learn

Replace Discouraged Syntaxes of rand and randn

how to use the rng function when replacing discouraged syntaxes, take a few moments to
understand their function. This should help you to see which new rng syntax best suits
your needs.

The first input to rand (Generator,s) or randn(Generator,s) specified the type of
the generator, as described here.

Generator = 'seed' referred to the MATLAB v4 generator, not to the seed
initialization value.

Generator = 'state' referred to the MATLAB v5 generators, not to the internal state
of the generator.

Generator = 'twister’ referred to the Mersenne Twister generator, now the
MATLARB startup generator.

The v4 and v5 generators are no longer recommended unless you are trying to exactly
reproduce the random numbers generated in earlier versions of MATLAB. The simplest

way to update your code is to use rng. The rng function replaces the names for the rand
and randn generators as follows.

rand/randn Generator Name rng Generator Name
'seed' 'v4'
'state’ 'vhuniform' (for rand)
or
'v5normal' (for randn)
"twister' "twister' (recommended)

Replacement Syntaxes for Initializing the Generator with an
Integer Seed

The most common uses of the integer seed sd in the rand (Generator, sd) syntax were
to:

* Reproduce exactly the same random numbers each time (e.g., by using a seed such as
0,1, or 3141879)

* Try to ensure that MATLAB always gives different random numbers in separate runs
(for example, by using a seed such as sum(100*clock))

3-41

3 Random Numbers

The following table shows replacements for syntaxes with an integer seed sd.

* The first column shows the discouraged syntax with rand and randn.

» The second column shows how to exactly reproduce the discouraged behavior with the
new rng function. In most cases, this is done by specifying a legacy generator type
such as the v4 or v5 generators, which is no longer recommended.

* The third column shows the recommended alternative, which does not specify the
optional generator type input to rng. Therefore, if you always omit the Generator
input, rand, randn, and randi just use the default Mersenne Twister generator that
is used at MATLAB startup. In future releases when new generators supersede the
Mersenne Twister, this code will use the new default.

Discouraged rand/randn Syntax

Not Recommended: Reproduce
Discouraged Behavior Exactly By
Specifying Generator Type

Recommended
Alternative: Does
Not Override
Generator Type

rand('twister',5489)

rng (5489, 'twister"')

rng('default')

rand('seed',sd)

randn('seed',sd)

rng(sd, 'v4")

rand('state',sd)

rng(sd, 'vSuniform')

randn('state',sd)

rng(sd, 'vbnormal')

rng(sd)

rand('seed',sum(100*clock))

rng(sum(100*clock), 'v4')

rng('shuffle')

Replacement Syntaxes for Initializing the Generator with a

State Vector

The most common use of the state vector (shown here as st) in the

rand(Generator,st) syntax was to reproduce exactly the random numbers generated
at a specific point in an algorithm or iteration. For example, you could use this vector as

an aid in debugging.

The rng function changes the pattern of saving and restoring the state of the random

number generator as shown in the next table. The example in the left column assumes
that you are using the v5 uniform generator. The example in the right column uses the
new syntax, and works for any generator you use.

3-42

Replace Discouraged Syntaxes of rand and randn

Discouraged Syntax Using rand/randn New Syntax Using rng
% Save v5 generator state. % Get generator settings.
st = rand('state'); S = rng;
% Call rand. % Call rand.
X = rand; X = rand;
% Restore v5 generator state. % Restore previous generator
rand('state',st); % settings.
rng(s);
% Call rand again and hope
% for the same results. % Call rand again and
= rand % get the same results.
y = rand

For a demonstration, see this instructional video.

If You Are Unable to Upgrade from Discouraged Syntax

If there is code that you are not able or not permitted to modify and you know that it uses
the discouraged random number generator control syntaxes, it is important to remember
that when you use that code MATLAB will switch into legacy mode. In legacy mode, rand
and randn are controlled by separate generators, each with their own settings.

Calls to rand in legacy mode use one of the following:

* The 'v4' generator, controlled by rand('seed', ...)
* The 'v5uniform' generator, controlled by rand('state’, ...)
* The 'twister' generator, controlled by rand('twister', ...)

Calls to randn in legacy mode use one of the following:

* The 'v4' generator, controlled by randn('seed', ...)
* The 'v5normal' generator, controlled by randn('state', ...)

If code that you rely on puts MATLAB into legacy mode, use the following command to
escape legacy mode and get back to the default startup generator:

rng default

Alternatively, to guard around code that puts MATLAB into legacy mode, use:

3-43

https://www.mathworks.com/videos/controlling-random-number-generation-101417.html

3 Random Numbers

S = rng % Save current settings of the generator.

% Call code using legacy random number generator syntaxes.
rng(s) % Restore previous settings of the generator.
See Also

rand | randn | rng

Related Examples

. “Create Arrays of Random Numbers” on page 3-3

3-44

Controlling Random Number Generation

Controlling Random Number Generation

This example shows how to use the rng function, which provides control over random
number generation.

(Pseudo)Random numbers in MATLAB come from the rand, randi, and randn functions.
Many other functions call those three, but those are the fundamental building blocks. All
three depend on a single shared random number generator that you can control using
rng.

It's important to realize that "random" numbers in MATLAB are not unpredictable at all,
but are generated by a deterministic algorithm. The algorithm is designed to be
sufficiently complicated so that its output appears to be an independent random sequence
to someone who does not know the algorithm, and can pass various statistical tests of
randomness. The function that is introduced here provides ways to take advantage of the
determinism to

* repeat calculations that involve random numbers, and get the same results, or
* guarantee that different random numbers are used in repeated calculations

and to take advantage of the apparent randomness to justify combining results from
separate calculations.

“Starting Over"

If you look at the output from rand, randi, or randn in a new MATLAB session, you'll
notice that they return the same sequences of numbers each time you restart MATLAB.
It's often useful to be able to reset the random number generator to that startup state,
without actually restarting MATLAB. For example, you might want to repeat a calculation
that involves random numbers, and get the same result.

rng provides a very simple way to put the random number generator back to its default
settings.

rng default
rand % returns the same value as at startup

ans = 0.8147

What are the "default" random number settings that MATLAB starts up with, or that rng
default gives you? If you call rng with no inputs, you can see that it is the Mersenne
Twister generator algorithm, seeded with 0.

3-45

3 Random Numbers

3-46

rng

ans = struct with fields:
Type: 'twister'
Seed: 0
State: [625x1 uint32]

You'll see in more detail below how to use the above output, including the State field, to
control and change how MATLAB generates random numbers. For now, it serves as a way
to see what generator rand, randi, and randn are currently using.

Non-Repeatability

Each time you call rand, randi, or randn, they draw a new value from their shared
random number generator, and successive values can be treated as statistically
independent. But as mentioned above, each time you restart MATLAB those functions are
reset and return the same sequences of numbers. Obviously, calculations that use the
same "random" numbers cannot be thought of as statistically independent. So when it's
necessary to combine calculations done in two or more MATLAB sessions as if they were
statistically independent, you cannot use the default generator settings.

One simple way to avoid repeating the same random numbers in a new MATLAB session
is to choose a different seed for the random number generator. rng gives you an easy way
to do that, by creating a seed based on the current time.

rng shuffle
rand

ans = 0.7530

Each time you use 'shuffle’, it reseeds the generator with a different seed. You can call
rng with no inputs to see what seed it actually used.

rng

ans = struct with fields:
Type: 'twister'
Seed: 1833919385
State: [625x1 uint32]

rng shuffle % creates a different seed each time
rng

Controlling Random Number Generation

ans = struct with fields:
Type: 'twister'
Seed: 1833919390
State: [625x1 uint32]

rand

ans = 0.5822

'shuffle' is a very easy way to reseed the random number generator. You might think
that it's a good idea, or even necessary, to use it to get "true" randomness in MATLAB. For
most purposes, though, it is not necessary to use 'shuffle' at all. Choosing a seed
based on the current time does not improve the statistical properties of the values you'll
get from rand, randi, and randn, and does not make them "more random" in any real
sense. While it is perfectly fine to reseed the generator each time you start up MATLAB,
or before you run some kind of large calculation involving random numbers, it is actually
not a good idea to reseed the generator too frequently within a session, because this can
affect the statistical properties of your random numbers.

What 'shuffle' does provide is a way to avoid repeating the same sequences of values.
Sometimes that is critical, sometimes it's just "nice", but often it is not important at all.
Bear in mind that if you use 'shuffle', you may want to save the seed that rng created
so that you can repeat your calculations later on. You'll see how to do that below.

More Control over Repeatability and Non-Repeatability

So far, you've seen how to reset the random number generator to its default settings, and
reseed it using a seed that is created using the current time. rng also provides a way to
reseed it using a specific seed.

You can use the same seed several times, to repeat the same calculations. For example, if
you run this code twice ...

rng(l) % the seed is any non-negative integer < 2732
X = randn(1,5)

X = 1Ix5

-0.6490 1.1812 -0.7585 -1.1096 -0.8456

rng (1)
X = randn(1,5)

3-47

3 Random Numbers

3-48

X = 1Ix5

-0.6490 1.1812 -0.7585 -1.1096 -0.8456

... you get exactly the same results. You might do this to recreate x after having cleared it,
so that you can repeat what happens in subsequent calculations that depend on X, using
those specific values.

On the other hand, you might want to choose different seeds to ensure that you don't
repeat the same calculations. For example, if you run this code in one MATLAB session ...

rng(2)
x2 = sum(randn(50,1000),1); % 1000 trials of a random walk

and this code in another ...

rng(3)
X3 = sum(randn(50,1000),1);

... you could combine the two results and be confident that they are not simply the same
results repeated twice.

X = [x2 x3];

As with 'shuffle' there is a caveat when reseeding MATLAB's random number
generator, because it affects all subsequent output from rand, randi, and randn. Unless
you need repeatability or uniqueness, it is usually advisable to simply generate random
values without reseeding the generator. If you do need to reseed the generator, that is
usually best done at the command line, or in a spot in your code that is not easily
overlooked.

Choosing a Generator Type

Not only can you reseed the random number generator as shown above, you can also
choose the type of random number generator that you want to use. Different generator
types produce different sequences of random numbers, and you might, for example,
choose a specific type because of its statistical properties. Or you might need to recreate
results from an older version of MATLAB that used a different default generator type.

One other common reason for choosing the generator type is that you are writing a
validation test that generates "random" input data, and you need to guarantee that your
test can always expect exactly the same predictable result. If you call rng with a seed

Controlling Random Number Generation

before creating the input data, it reseeds the random number generator. But if the
generator type has been changed for some reason, then the output from rand, randi,
and randn will not be what you expect from that seed. Therefore, to be 100% certain of
repeatability, you can also specify a generator type.

For example,
rng(0, 'twister")

causes rand, randi, and randn to use the Mersenne Twister generator algorithm, after
seeding it with 0.

Using 'combRecursive'
rng(0, 'combRecursive')

selects the Combined Multiple Recursive generator algorithm, which supports some
parallel features that the Mersenne Twister does not.

This command
rng(0, 'vd")
selects the generator algorithm that was the default in MATLAB 4.0.

And of course, this command returns the random number generator to its default
settings.

rng default

However, because the default random number generator settings may change between
MATLAB releases, using 'default' does not guarantee predictable results over the
long-term. 'default’ is a convenient way to reset the random number generator, but for
even more predictability, specify a generator type and a seed.

On the other hand, when you are working interactively and need repeatability, it is
simpler, and usually sufficient, to call rng with just a seed.

Saving and Restoring Random Number Generator Settings

Calling rng with no inputs returns a scalar structure with fields that contain two pieces of
information described already: the generator type, and the integer with which the
generator was last reseeded.

3-49

3 Random Numbers

3-50

s = rng

struct with fields:
Type: 'twister'
Seed: 0

State: [625x1 uint32]

wn
Il

The third field, State, contains a copy of the generator's current state vector. This state
vector is the information that the generator maintains internally in order to generate the
next value in its sequence of random numbers. Each time you call rand, randi, or
randn, the generator that they share updates its internal state. Thus, the state vector in
the settings structure returned by rng contains the information necessary to repeat the
sequence, beginning from the point at which the state was captured.

While just being able to see this output is informative, rng also accepts a settings
structure as an input, so that you can save the settings, including the state vector, and
restore them later to repeat calculations. Because the settings contain the generator type,
you'll know exactly what you're getting, and so "later" might mean anything from
moments later in the same MATLAB session, to years (and multiple MATLAB releases)
later. You can repeat results from any point in the random number sequence at which you
saved the generator settings. For example

x1 = randn(10,10);
S = rng;
X2 = randn(1,5)

move ahead in the random number sequence
save the settings at this point

o o°

x2 = 1Ix5
0.8404 -0.8880 0.1001 -0.5445 0.3035
x3 = randn(5,5);

rng(s);
X2 = randn(1,5)

move ahead in the random number sequence
return the generator back to the saved state
repeat the same numbers

o® o° o°

X2 = 1x5
0.8404 -0.8880 0.1001 -0.5445 0.3035
Notice that while reseeding provides only a coarse reinitialization, saving and restoring

the generator state using the settings structure allows you to repeat any part of the
random number sequence.

Controlling Random Number Generation

The most common way to use a settings structure is to restore the generator state.
However, because the structure contains not only the state, but also the generator type
and seed, it's also a convenient way to temporarily switch generator types. For example, if
you need to create values using one of the legacy generators from MATLAB 5.0, you can
save the current settings at the same time that you switch to use the old generator ...

previousSettings

rng(0, 'vsuniform')

previousSettings = struct with fields:
Type: 'twister'
Seed: 0
State: [625x1 uint32]

... and then restore the original settings later.

rng(previousSettings)

You should not modify the contents of any of the fields in a settings structure. In
particular, you should not construct your own state vector, or even depend on the format
of the generator state.

Writing Simpler, More Flexible, Code
rng allows you to either

* reseed the random number generator, or
* save and restore random number generator settings

without having to know what type it is. You can also return the random number generator
to its default settings without having to know what those settings are. While there are
situations when you might want to specify a generator type, rng affords you the simplicity
of not having to specify it.

If you are able to avoid specifying a generator type, your code will automatically adapt to
cases where a different generator needs to be used, and will automatically benefit from
improved properties in a new default random number generator type.

Legacy Mode and rng

In versions of MATLAB prior to 7.7, you controlled the internal state of the random
number generator by calling rand or randn directly with the 'seed’, 'state’, or 'twister'
inputs. For example,

3-51

3 Random Numbers

3-52

rand('state',1234)

That syntax is not recommended, and switches MATLAB into "legacy random number
mode", where rand and randn use separate and out of date generators, behaving as they
did prior to MATLAB 7.7. If possible, you should update any existing code that uses the
old syntax to use rng instead. To do that, it may take some thought to determine the true
intent of the old code; see Updating Your Random Number Generator Syntax in the User
Guide for suggestions and examples.

If you, or some code you've run, have executed a command such as
rand('state',1234) that puts MATLAB into legacy mode, you can use

rng default

to escape from legacy mode and get back to the default startup generator. If there is code
that you are not able or not permitted to modify, you can guard around that old code
using:

s = rng; % save current settings of the generator

% call code using legacy random number generator syntaxes

rng(s) % restore previous settings of the generator

to make sure that no other code uses the legacy random number generators.

rng and RandStream

rng provides a convenient way to control random number generation in MATLAB for the
most common needs. However, more complicated situations involving multiple random
number streams and parallel random number generation require a more complicated tool.
The RandStream class is that tool, and it provides the most powerful way to control
random number generation. The two tools are complementary, with rng providing a much
simpler and concise syntax that is built on top of the flexibility of RandStream.

Sparse Matrices

* “Computational Advantages of Sparse Matrices” on page 4-2
* “Constructing Sparse Matrices” on page 4-4

* “Accessing Sparse Matrices” on page 4-9

* “Sparse Matrix Operations” on page 4-17

» “Finite Difference Laplacian” on page 4-38

* “Graphical Representation of Sparse Matrices” on page 4-44
* “Graphs and Matrices” on page 4-50

* “Sparse Matrix Reordering” on page 4-58

4 Sparse Matrices

Computational Advantages of Sparse Matrices

4-2

In this section...

“Memory Management” on page 4-2
“Computational Efficiency” on page 4-3

Memory Management

Using sparse matrices to store data that contains a large number of zero-valued elements
can both save a significant amount of memory and speed up the processing of that data.
sparse is an attribute that you can assign to any two-dimensional MATLAB matrix that is
composed of double or logical elements.

The sparse attribute allows MATLAB to:

* Store only the nonzero elements of the matrix, together with their indices.
* Reduce computation time by eliminating operations on zero elements.

For full matrices, MATLAB stores every matrix element internally. Zero-valued elements
require the same amount of storage space as any other matrix element. For sparse
matrices, however, MATLAB stores only the nonzero elements and their indices. For large
matrices with a high percentage of zero-valued elements, this scheme significantly
reduces the amount of memory required for data storage.

The whos command provides high-level information about matrix storage, including size
and storage class. For example, this whos listing shows information about sparse and full
versions of the same matrix.

Create 1100-by-1100 matrix.
Set elements >50 to zero.
Create sparse matrix of same.

M full = magic(1100);
M _full(M full > 50) = 0;
M sparse = sparse(M full);

o° o o°

whos
Name Size Bytes C(lass Attributes
M _full 1100x11060 9680000 double
M sparse 1100x1100 9608 double sparse

Notice that the number of bytes used is fewer in the sparse case, because zero-valued
elements are not stored.

See Also

Computational Efficiency

Sparse matrices also have significant advantages in terms of computational efficiency.
Unlike operations with full matrices, operations with sparse matrices do not perform
unnecessary low-level arithmetic, such as zero-adds (x+0 is always x). The resulting
efficiencies can lead to dramatic improvements in execution time for programs working
with large amounts of sparse data.

See Also

More About

. “Sparse Matrix Operations” on page 4-17

4-3

4 Sparse Matrices

Constructing Sparse Matrices

4-4

In this section...

“Creating Sparse Matrices” on page 4-4

“Importing Sparse Matrices” on page 4-8

Creating Sparse Matrices

MATLAB never creates sparse matrices automatically. Instead, you must determine if a
matrix contains a large enough percentage of zeros to benefit from sparse techniques.

The density of a matrix is the number of nonzero elements divided by the total number of
matrix elements. For matrix M, this would be

nnz(M) / prod(size(M));

or

nnz(M) / numel(M);

Matrices with very low density are often good candidates for use of the sparse format.

Converting Full to Sparse

You can convert a full matrix to sparse storage using the sparse function with a single
argument.

For example:

A=10 0 0 5
0 2 0 0
1 3 0 0
0 0 4 01;
S = sparse(A)
S =
(3,1) 1
(2,2) 2
(3,2) 3
(4,3) 4
(1,4) 5

Constructing Sparse Matrices

The printed output lists the nonzero elements of S, together with their row and column
indices. The elements are sorted by columns, reflecting the internal data structure.

You can convert a sparse matrix to full storage using the full function, provided the
matrix order is not too large. For example, A = full(S) reverses the example
conversion.

Converting a full matrix to sparse storage is not the most frequent way of generating
sparse matrices. If the order of a matrix is small enough that full storage is possible, then
conversion to sparse storage rarely offers significant savings.

Creating Sparse Matrices Directly

You can create a sparse matrix from a list of nonzero elements using the sparse function
with five arguments.

S = sparse(i,j,s,m,n)

i and j are vectors of row and column indices, respectively, for the nonzero elements of
the matrix. s is a vector of nonzero values whose indices are specified by the
corresponding (i, j) pairs. mis the row dimension of the resulting matrix, and n is the
column dimension.

The matrix S of the previous example can be generated directly with
S = sparse([3 23 41]1,[12234],[12345],4,4)

S =

A~ WNW
A WNNR
U~ WNR

The sparse command has a number of alternate forms. The example above uses a form
that sets the maximum number of nonzero elements in the matrix to Llength(s). If
desired, you can append a sixth argument that specifies a larger maximum, allowing you
to add nonzero elements later without reallocating the sparse matrix.

The matrix representation of the second difference operator is a good example of a sparse
matrix. It is a tridiagonal matrix with -2s on the diagonal and 1s on the super- and
subdiagonal. There are many ways to generate it—here's one possibility.

4 Sparse Matrices

4-6

n=2>5;
D = sparse(1l:n,1l:n,-2*ones(1l,n),n,n);
E = sparse(2:n,1:n-1,0nes(1,n-1),n,n);
S = E+D+E'
S =

(1,1) -2

(2,1) 1

(1,2) 1

(2,2) -2

(3,2) 1

(2,3) 1

(3,3) -2

(4,3) 1

(3,4) 1

(4,4) -2

(5,4) 1

(4,5) 1

(5,5) -2

Now F = full(S) displays the corresponding full matrix.

F = full(s)
F:
-2 1 0 0 0
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
0 0 0 1 -2

Creating Sparse Matrices from Their Diagonal Elements

Creating sparse matrices based on their diagonal elements is a common operation, so the
function spdiags handles this task. Its syntax is

S = spdiags(B,d,m,n)
To create an output matrix S of size m-by-n with elements on p diagonals:

* B is a matrix of size min(m, n)-by-p. The columns of B are the values to populate the
diagonals of S.

Constructing Sparse Matrices

* dis avector of length p whose integer elements specify which diagonals of S to
populate.

That is, the elements in column j of B fill the diagonal specified by element j of d.

Note If a column of B is longer than the diagonal it's replacing, super-diagonals are taken
from the lower part of the column of B, and sub-diagonals are taken from the upper part
of the column of B.

As an example, consider the matrix B and the vector d.

B=1 41 11 0
52 22 0
63 33 13
74 44 24 1;
d=1[-3
0
2];

Use these matrices to create a 7-by-4 sparse matrix A:
A = spdiags(B,d,7,4)
A —1

11
41
22
52
13
33
63
24
44
74

APPAEAPRPWWWNNRERE

NANOWRUN DR

In its full form, A looks like this:
full(A)

ans =

4 Sparse Matrices

4-8

11 0 13 0
0 22 0 24
0 0 33 0

41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74

spdiags can also extract diagonal elements from a sparse matrix, or replace matrix
diagonal elements with new values. Type help spdiags for details.

Importing Sparse Matrices

You can import sparse matrices from computations outside the MATLAB environment.
Use the spconvert function in conjunction with the Load command to import text files
containing lists of indices and nonzero elements. For example, consider a three-column
text file T.dat whose first column is a list of row indices, second column is a list of
column indices, and third column is a list of nonzero values. These statements load T.dat
into MATLAB and convert it into a sparse matrix S:

load T.dat
S = spconvert(T)

The save and load commands can also process sparse matrices stored as binary data in
MAT-files.

See Also

sparse | spconvert

More About

. “Sparse Matrix Operations” on page 4-17

Accessing Sparse Matrices

Accessing Sparse Matrices

In this section...

“Nonzero Elements” on page 4-9

“Indices and Values” on page 4-11

“Indexing in Sparse Matrix Operations” on page 4-11
“Visualizing Sparse Matrices” on page 4-15

Nonzero Elements

There are several commands that provide high-level information about the nonzero
elements of a sparse matrix:

* nnz returns the number of nonzero elements in a sparse matrix.

* nonzeros returns a column vector containing all the nonzero elements of a sparse
matrix.

* nzmax returns the amount of storage space allocated for the nonzero entries of a
sparse matrix.

To try some of these, load the supplied sparse matrix west0479, one of the Harwell-
Boeing collection.

load west0479

whos
Name Size Bytes C(lass Attributes
west0479 479x479 34032 double sparse

This matrix models an eight-stage chemical distillation column.

Try these commands.
nnz (west0479)
ans =

1887

4-9

4 Sparse Matrices

format short e
west0479

west0479 =

() 1.0000e+00
() -3.7648e-02
() -3.4424e-01
() 1.0000e+00
(31,2) -2.4523e-02
() -3.7371e-01
() 1.0000e+00
() -3.6613e-02
() -8.3694e-01
() 1.3000e+02

1.0000e+00
-3.7648e-02
-3.4424e-01
1.0000e+00
-2.4523e-02
-3.7371e-01
1.0000e+00
-3.6613e-02
-8.3694e-01
1.3000e+02

Note Use Ctrl+C to stop the nonzeros listing at any time.

Note that initially nnz has the same value as nzmax by default. That is, the number of
nonzero elements is equivalent to the number of storage locations allocated for nonzeros.
However, MATLAB does not dynamically release memory if you zero out additional array

4-10

Accessing Sparse Matrices

elements. Changing the value of some matrix elements to zero changes the value of nnz,
but not that of nzmax.

However, you can add as many nonzero elements to the matrix as desired. You are not
constrained by the original value of nzmax.

Indices and Values

For any matrix, full or sparse, the find function returns the indices and values of nonzero
elements. Its syntax is

[i,3,s] = find(S);

find returns the row indices of nonzero values in vector i, the column indices in vector
j, and the nonzero values themselves in the vector s. The example below uses find to
locate the indices and values of the nonzeros in a sparse matrix. The sparse function
uses the find output, together with the size of the matrix, to recreate the matrix.

S1 = west0479;

[i,j,s] = find(S1);
[m,n] = size(S1);

S2 = sparse(i,j,s,m,n);

Indexing in Sparse Matrix Operations

Because sparse matrices are stored in compressed sparse column format, there are
different costs associated with indexing into a sparse matrix than there are with indexing
into a full matrix. Such costs are negligible when you need to change only a few elements
in a sparse matrix, so in those cases it’s normal to use regular array indexing to reassign
values:

B = speye(4);
[i,j,s] = find(B);
[i,],s]
ans =
1 1 1
2 2 1
3 3 1
4 4 1

4-11

4 Sparse Matrices

4-12

B(3,1) = 42;
[i,j,s] = find(B);
[i,],s]
ans =
1 1 1
3 1 42
2 2 1
3 3 1
4 4 1

In order to store the new matrix with 42 at (3,1), MATLAB inserts an additional row into
the nonzero values vector and subscript vectors, then shifts all matrix values after (3,1).

Using linear indexing to access or assign an element in a large sparse matrix will fail if
the linear index exceeds 248 -1, which is the current upper bound for the number of
elements allowed in a matrix.

S = spalloc(2730,2"30,2);
S(end) =1

Maximum variable size allowed by the program is exceeded.
To access an element whose linear index is greater than intmax, use array indexing:
S(2730,2730) =1
S =
(1073741824,1073741824) 1

While the cost of indexing into a sparse matrix to change a single element is negligible, it
is compounded in the context of a loop and can become quite slow for large matrices. For
that reason, in cases where many sparse matrix elements need to be changed, it is best to
vectorize the operation instead of using a loop. For example, consider a sparse identity
matrix:

n
A

10000;
4*speye(n);

Changing the elements of A within a loop takes is slower than a similar vectorized
operation:

tic

A(l:n-1,n) = -1;

Accessing Sparse Matrices

A(n,1:n-1) = -1;
toc

Elapsed time is 0.003344 seconds.

tic

for k = 1:n-1
C(k,n)
C(n, k)

end

toc

-1
-1

’
’

Elapsed time is 0.448069 seconds.

Since MATLAB stores sparse matrices in compressed sparse column format, it needs to
shift multiple entries in A during each pass through the loop.

Preallocating the memory for a sparse matrix and then filling it in an element-wise
manner similarly causes a significant amount of overhead in indexing into the sparse
array:

S1 = spalloc(1000,1000,100000);

tic;

for n = 1:100000
i = ceil(1000*rand(1,1));
j = ceil(1000*rand(1,1));
S1(i,j) = rand(1,1);

end

toc

Elapsed time is 2.577527 seconds.

Constructing the vectors of indices and values eliminates the need to index into the
sparse array, and thus is significantly faster:

ceil(1000*rand(100000,1));
ceil(1000*rand(100000,1));
zeros(size(i));

n = 1:100000

v(n) = rand(1,1);

end

SO

-\ <

tic;
S2 = sparse(i,j,v,1000,1000);
toc

4-13

4 Sparse Matrices

Elapsed time is 0.017676 seconds.

For that reason, it’s best to construct sparse matrices all at once using a construction
function, like the sparse or spdiags functions.

For example, suppose you wanted the sparse form of the coordinate matrix C:

4000 -1
0400 -1
C=10040-1
0004 -1
1111 4

Construct the five-column matrix directly with the sparse function using the triplet pairs
for the row subscripts, column subscripts, and values:

i=[1525354512345]"';
j=10[112233445555D5]"';
s=[41414141-1-1-1-14]1";
C = sparse(i,j,s)
C =

(1,1) 4

(5,1) 1

(2,2) 4

(5,2) 1

(3,3) 4

(5,3) 1

(4,4) 4

(5,4) 1

(1,5) -1

(2,5) -1

(3,5) -1

(4,5) -1

(5,5) 4

The ordering of the values in the output reflects the underlying storage by columns. For
more information on how MATLAB stores sparse matrices, see John R. Gilbert, Cleve
Moler, and Robert Schreiber's Sparse Matrices In Matlab: Design and Implementation,
(SIAM Journal on Matrix Analysis and Applications, 13:1, 333-356 (1992)).

4-14

https://www.mathworks.com/help/pdf_doc/otherdocs/simax.pdf

Accessing Sparse Matrices

Visualizing Sparse Matrices

It is often useful to use a graphical format to view the distribution of the nonzero
elements within a sparse matrix. The MATLAB spy function produces a template view of
the sparsity structure, where each point on the graph represents the location of a nonzero
array element.

For example:

Load the supplied sparse matrix west0479, one of the Harwell-Boeing collection.

load west0479

View the sparsity structure.

spy (west0479)

4-15

4 Sparse Matrices

50 [i% .

100f_ = “ \ -]
- n . - =
150 | I \ 1
. L~
200 | : " . L

L i v _
250 . ﬂ.-' .
iy iy :
300 — _.“f#‘ X
b - X
350 | — “‘Iﬂ ;
Yo '*F'. y
400 | ¥ i 1
£ - By
450 e L
!tl i i i K -L
0 100 200 300 400
nz = 1887
See Also
sparse
More About
. “Computational Advantages of Sparse Matrices” on page 4-2
. “Constructing Sparse Matrices” on page 4-4
. “Sparse Matrix Operations” on page 4-17

4-16

Sparse Matrix Operations

Sparse Matrix Operations

In this section...

“Efficiency of Operations” on page 4-17
“Permutations and Reordering” on page 4-18
“Factoring Sparse Matrices” on page 4-22
“Systems of Linear Equations” on page 4-31
“Eigenvalues and Singular Values” on page 4-34

“References” on page 4-37

Efficiency of Operations

* “Computational Complexity” on page 4-17
» “Algorithmic Details” on page 4-17

Computational Complexity

The computational complexity of sparse operations is proportional to nnz, the number of
nonzero elements in the matrix. Computational complexity also depends linearly on the
row size m and column size n of the matrix, but is independent of the product m*n, the
total number of zero and nonzero elements.

The complexity of fairly complicated operations, such as the solution of sparse linear
equations, involves factors like ordering and fill-in, which are discussed in the previous
section. In general, however, the computer time required for a sparse matrix operation is
proportional to the number of arithmetic operations on nonzero quantities.

Algorithmic Details
Sparse matrices propagate through computations according to these rules:

* Functions that accept a matrix and return a scalar or constant-size vector always
produce output in full storage format. For example, the size function always returns a
full vector, whether its input is full or sparse.

» Functions that accept scalars or vectors and return matrices, such as zeros, ones,
rand, and eye, always return full results. This is necessary to avoid introducing
sparsity unexpectedly. The sparse analog of zeros (m, n) is simply sparse(m,n). The

4-17

4 Sparse Matrices

4-18

sparse analogs of rand and eye are sprand and speye, respectively. There is no
sparse analog for the function ones.

Unary functions that accept a matrix and return a matrix or vector preserve the
storage class of the operand. If S is a sparse matrix, then chol(S) is also a sparse
matrix, and diag(S) is a sparse vector. Columnwise functions such as max and sum
also return sparse vectors, even though these vectors can be entirely nonzero.
Important exceptions to this rule are the sparse and full functions.

Binary operators yield sparse results if both operands are sparse, and full results if
both are full. For mixed operands, the result is full unless the operation preserves
sparsity. If S is sparse and F is full, then S+F, S*F, and F\S are full, while S. *F and
S&F are sparse. In some cases, the result might be sparse even though the matrix has
few zero elements.

Matrix concatenation using either the cat function or square brackets produces
sparse results for mixed operands.

Permutations and Reordering

“Reordering for Sparsity” on page 4-20

“Reordering to Reduce Bandwidth” on page 4-21
“Approximate Minimum Degree Ordering” on page 4-21
“Nested Dissection Ordering” on page 4-22

A permutation of the rows and columns of a sparse matrix S can be represented in two
ways:

A permutation matrix P acts on the rows of S as P*S or on the columns as S*P"'.

A permutation vector p, which is a full vector containing a permutation of 1: n, acts on
the rows of Sas S(p, :), or on the columns as S(:,p).

For example:

o UTHTDT

©

[13425]

eye(5,5);

I(p,:)

ones(4,1);

diag(11:11:55) + diag(e,1l) + diag(e,-1)

Sparse Matrix Operations

1 3 4 2 5
P =
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
S =
11 1 0 0 0
1 22 1 0 0
0 1 33 1 0
0 0 1 44 1
0 0 0 1 55

You can now try some permutations using the permutation vector p and the permutation
matrix P. For example, the statements S(p, :) and P*S return the same matrix.

S(p,:)

ans =
11 1 0 0 0
0 1 33 1 0
0 0 1 44 1
1 22 1 0 0
0 0 0 1 55

P*S

ans =
11 1 0 0 0
0 1 33 1 0
0 0 1 44 1
1 22 1 0 0
0 0 0 1 55

Similarly, S(:,p) and S*P' both produce
S*p

4-19

4 Sparse Matrices

4-20

ans =
11 0 0 1 0
1 1 0 22 0
0 33 1 1 0
0 1 44 0 1
0 0 1 0 55

If P is a sparse matrix, then both representations use storage proportional to n and you
can apply either to S in time proportional to nnz (S). The vector representation is slightly
more compact and efficient, so the various sparse matrix permutation routines all return
full row vectors with the exception of the pivoting permutation in LU (triangular)
factorization, which returns a matrix compatible with the full LU factorization.

To convert between the two permutation representations:

n =>5;
I = speye(n);
Pr =1I(p,:);
Pc = I(:,p);
pc = (1:n)*Pc
pc =
1 3 4 2 5

pr = (Pr*(l:n)")"'

1 3 4 2 5
The inverse of P is simply R = P'. You can compute the inverse of p with r(p) = 1:n.
r(p) = 1:5
r=
1 4 2 3 5
Reordering for Sparsity

Reordering the columns of a matrix can often make its LU or QR factors sparser.
Reordering the rows and columns can often make its Cholesky factors sparser. The
simplest such reordering is to sort the columns by nonzero count. This is sometimes a

Sparse Matrix Operations

good reordering for matrices with very irregular structures, especially if there is great
variation in the nonzero counts of rows or columns.

The colperm computes a permutation that orders the columns of a matrix by the number
of nonzeros in each column from smallest to largest.

Reordering to Reduce Bandwidth

The reverse Cuthill-McKee ordering is intended to reduce the profile or bandwidth of the
matrix. It is not guaranteed to find the smallest possible bandwidth, but it usually does.
The symrcm function actually operates on the nonzero structure of the symmetric matrix
A + A', but the result is also useful for nonsymmetric matrices. This ordering is useful
for matrices that come from one-dimensional problems or problems that are in some
sense long and thin.

Approximate Minimum Degree Ordering

The degree of a node in a graph is the number of connections to that node. This is the
same as the number of off-diagonal nonzero elements in the corresponding row of the
adjacency matrix. The approximate minimum degree algorithm generates an ordering
based on how these degrees are altered during Gaussian elimination or Cholesky
factorization. It is a complicated and powerful algorithm that usually leads to sparser
factors than most other orderings, including column count and reverse Cuthill-McKee.
Because keeping track of the degree of each node is very time-consuming, the
approximate minimum degree algorithm uses an approximation to the degree, rather than
the exact degree.

These MATLAB functions implement the approximate minimum degree algorithm:

* symamd — Use with symmetric matrices.

* colamd — Use with nonsymmetric matrices and symmetric matrices of the form A*A'
or A'*A.

See “Reordering and Factorization of Sparse Matrices” on page 4-23 for an example
using symamd.

You can change various parameters associated with details of the algorithms using the
spparms function.

For details on the algorithms used by colamd and symamd, see [5]. The approximate
degree the algorithms use is based on [1].

4-21

4 Sparse Matrices

4-22

Nested Dissection Ordering

Like the approximate minimum degree ordering, the nested dissection ordering algorithm
implemented by the dissect function reorders the matrix rows and columns by
considering the matrix to be the adjacency matrix of a graph. The algorithm reduces the
problem down to a much smaller scale by collapsing together pairs of vertices in the
graph. After reordering the small graph, the algorithm then applies projection and
refinement steps to expand the graph back to the original size.

The nested dissection algorithm produces high quality reorderings and performs
particularly well with finite element matrices compared to other reordering techniques.
For more information about the nested dissection ordering algorithm, see [7].

Factoring Sparse Matrices

* “LU Factorization” on page 4-22

* “Cholesky Factorization” on page 4-26

* “QR Factorization” on page 4-27

* “Incomplete Factorizations” on page 4-28

LU Factorization

If S is a sparse matrix, the following command returns three sparse matrices L, U, and P
such that P*S = L*U.

[L,U,P] = lu(S);

lu obtains the factors by Gaussian elimination with partial pivoting. The permutation
matrix P has only n nonzero elements. As with dense matrices, the statement [L,U] =
Lu(S) returns a permuted unit lower triangular matrix and an upper triangular matrix
whose product is S. By itself, Lu(S) returns L and U in a single matrix without the pivot
information.

The three-output syntax [L,U,P] = lu(S) selects P via numerical partial pivoting, but
does not pivot to improve sparsity in the LU factors. On the other hand, the four-output
syntax [L,U,P,Q] = lu(S) selects P via threshold partial pivoting, and selects P and Q
to improve sparsity in the LU factors.

You can control pivoting in sparse matrices using

lu(S, thresh)

Sparse Matrix Operations

where thresh is a pivot threshold in [0,1]. Pivoting occurs when the diagonal entry in a
column has magnitude less than thresh times the magnitude of any sub-diagonal entry in
that column. thresh = 0 forces diagonal pivoting. thresh = 1 is the default. (The
default for thresh is 0.1 for the four-output syntax).

When you call Lu with three or less outputs, MATLAB automatically allocates the memory
necessary to hold the sparse L and U factors during the factorization. Except for the four-
output syntax, MATLAB does not use any symbolic LU prefactorization to determine the
memory requirements and set up the data structures in advance.

Reordering and Factorization of Sparse Matrices
This example shows the effects of reordering and factorization on sparse matrices.

If you obtain a good column permutation p that reduces fill-in, perhaps from symrcm or
colamd, then computing Lu(S(:,p)) takes less time and storage than computing
lu(S).

Create a sparse matrix using the Bucky ball example.
B = bucky;
B has exactly three nonzero elements in each row and column.

Create two permutations, r and m using symrcm and symamd respectively.

r
m

symrcm(B) ;
symamd (B) ;

The two permutations are the symmetric reverse Cuthill-McKee ordering and the
symmetric approximate minimum degree ordering.

Create spy plots to show the three adjacency matrices of the Bucky Ball graph with these
three different numberings. The local, pentagon-based structure of the original
numbering is not evident in the others.

figure
subplot(1,3,1)
spy(B)
title('Original')

subplot(1,3,2)

spy(B(r,r))
title('Reverse Cuthill-McKee')

4-23

4 Sparse Matrices

subplot(1,3,3)
spy(B(m,m))
title('Min Degree')

.:}Reue rse Cuthill-McKee o Min Degree

i .
-
2 ol SA %
s -
A
L
40 40 ‘o frs
[
r ‘.fﬁ > s:
&0 60 LI Y
o 20 40 60
nz = 180

The reverse Cuthill-McKee ordering, r, reduces the bandwidth and concentrates all the
nonzero elements near the diagonal. The approximate minimum degree ordering, m,
produces a fractal-like structure with large blocks of zeros.

To see the fill-in generated in the LU factorization of the Bucky ball, use speye, the
sparse identity matrix, to insert -3s on the diagonal of B.

B = B - 3*speye(size(B));

4-24

Sparse Matrix Operations

Since each row sum is now zero, this new B is actually singular, but it is still instructive to
compute its LU factorization. When called with only one output argument, lu returns the
two triangular factors, L and U, in a single sparse matrix. The number of nonzeros in that
matrix is a measure of the time and storage required to solve linear systems involving B.

Here are the nonzero counts for the three permutations being considered.

* T1lu(B) (Original): 1022
e Tu(B(r,r)) (Reverse Cuthill-McKee): 968
* lu(B(m,m)) (Approximate minimum degree): 636

Even though this is a small example, the results are typical. The original numbering
scheme leads to the most fill-in. The fill-in for the reverse Cuthill-McKee ordering is
concentrated within the band, but it is almost as extensive as the first two orderings. For
the approximate minimum degree ordering, the relatively large blocks of zeros are
preserved during the elimination and the amount of fill-in is significantly less than that
generated by the other orderings.

The spy plots below reflect the characteristics of each reordering.

figure
subplot(1,3,1)
spy (lu(B))
title('Original')

subplot(1,3,2)
spy(lu(B(r,r)))
title('Reverse Cuthill-McKee')

subplot(1,3,3)

spy(lu(B(m,m)))
title('Min Degree')

4-25

4 Sparse Matrices

ﬂReve rse Cuthill-McKee 0 Min Degree

L ;.“
Is
L}
40 40
o
’ -
60 60
0 20 40 60
rz = 1022 rz = 968 nz = 636

Cholesky Factorization

If S is a symmetric (or Hermitian), positive definite, sparse matrix, the statement below
returns a sparse, upper triangular matrix R so that R' *R = S.

R = chol(S)

chol does not automatically pivot for sparsity, but you can compute approximate
minimum degree and profile limiting permutations for use with chol(S(p,p)).

Since the Cholesky algorithm does not use pivoting for sparsity and does not require
pivoting for numerical stability, chol does a quick calculation of the amount of memory
required and allocates all the memory at the start of the factorization. You can use

4-26

Sparse Matrix Operations

symbfact, which uses the same algorithm as chol, to calculate how much memory is
allocated.

QR Factorization

MATLAB computes the complete QR factorization of a sparse matrix S with
[Q,R] = qr(S)

or

[Q,R,E] = qr(S)

but this is often impractical. The unitary matrix Q often fails to have a high proportion of
zero elements. A more practical alternative, sometimes known as “the Q-less QR
factorization,” is available.

With one sparse input argument and one output argument
R = qr(S)

returns just the upper triangular portion of the QR factorization. The matrix R provides a
Cholesky factorization for the matrix associated with the normal equations:

R'R = §'*S

However, the loss of numerical information inherent in the computation of S' *S is
avoided.

With two input arguments having the same number of rows, and two output arguments,
the statement

[C,R] = qr(S,B)

applies the orthogonal transformations to B, producing C = Q'*B without computing Q.

The Q-less QR factorization allows the solution of sparse least squares problems
minimize[Ax — b,

with two steps:

[c,R] = gr(A,b);
X = R\c

4-27

4 Sparse Matrices

4-28

If A is sparse, but not square, MATLAB uses these steps for the linear equation solving
backslash operator:

x = A\b
Or, you can do the factorization yourself and examine R for rank deficiency.

It is also possible to solve a sequence of least squares linear systems with different right-
hand sides, b, that are not necessarily known when R = qr(A) is computed. The
approach solves the “semi-normal equations R' *R*x = A'*b with

x = R\(R'"\(A'*b))

and then employs one step of iterative refinement to reduce round off error:

r=>b - A*x;
e = R\(R'\(A'*r));
X =X+ e

Incomplete Factorizations

The ilu and ichol functions provide approximate, incomplete factorizations, which are
useful as preconditioners for sparse iterative methods.

The ilu function produces three incomplete lower-upper (ILU) factorizations: the zero-fill
ILU (ILU(0)), a Crout version of ILU (ILUC(tau)), and ILU with threshold dropping and
pivoting (ILUTP(tau)). The ILU(O) never pivots and the resulting factors only have
nonzeros in positions where the input matrix had nonzeros. Both ILUC(tau) and
ILUTP(tau), however, do threshold-based dropping with the user-defined drop tolerance
tau.

For example:

A = gallery('neumann', 1600) + speye(1600);

ans =
7840
nnz(lu(A))
ans =
126478

Sparse Matrix Operations

shows that A has 7840 nonzeros, and its complete LU factorization has 126478 nonzeros.
On the other hand, the following code shows the different ILU outputs:

[L,U] = ilu(A);
nnz(L)+nnz(U)-size(A,1)

ans =
7840
norm(A- (L*U).*spones(A), 'fro')./norm(A, 'fro')
ans =
4.8874e-17
opts.type = 'ilutp';
opts.droptol = le-4;
[L,U,P] = ilu(A, opts);
nnz(L)+nnz(U)-size(A,1)
ans =
31147
norm(P*A - L*U,'fro')./norm(A, 'fro")
ans =
9.9224e-05
opts.type = 'crout’;
[L,U,P] = ilu(A, opts);
nnz(L)+nnz(U)-size(A,1)
ans =
31083
norm(P*A-L*U, 'fro')./norm(A, 'fro')
ans =

9.7344e-05

These calculations show that the zero-fill factors have 7840 nonzeros, the ILUTP(1le-4)
factors have 31147 nonzeros, and the ILUC(1le-4) factors have 31083 nonzeros. Also,

4-29

4 Sparse Matrices

4-30

the relative error of the product of the zero-fill factors is essentially zero on the pattern of
A. Finally, the relative error in the factorizations produced with threshold dropping is on
the same order of the drop tolerance, although this is not guaranteed to occur. See the
ilu reference page for more options and details.

The ichol function provides zero-fill incomplete Cholesky factorizations (IC(0)) as well
as threshold-based dropping incomplete Cholesky factorizations (ICT(tau)) of
symmetric, positive definite sparse matrices. These factorizations are the analogs of the
incomplete LU factorizations above and have many of the same characteristics. For
example:

A = delsq(numgrid('S',200));
nnz(A)

ans =

195228
nnz(chol(A, 'lower"))
ans =

7762589

shows that A has 195228 nonzeros, and its complete Cholesky factorization without
reordering has 7762589 nonzeros. By contrast:

L = ichol(A);
nnz(L)

ans =
117216
norm(A-(L*L").*spones(A), 'fro')./norm(A, 'fro")
ans =
3.5805e-17
opts.type = 'ict';
opts.droptol = le-4;

L = ichol(A,opts);
nnz(L)

Sparse Matrix Operations

ans =
1166754

norm(A-L*L', 'fro')./norm(A, 'fro")

ans =

2.3997e-04

IC(0) has nonzeros only in the pattern of the lower triangle of A, and on the pattern of A,
the product of the factors matches. Also, the ICT (1e-4) factors are considerably sparser
than the complete Cholesky factor, and the relative error between A and L*L' is on the
same order of the drop tolerance. It is important to note that unlike the factors provided
by chol, the default factors provided by ichol are lower triangular. See the ichol
reference page for more information.

Systems of Linear Equations

There are two different classes of methods for solving systems of simultaneous linear
equations:

* Direct methods are usually variants of Gaussian elimination. These methods involve
the individual matrix elements directly, through matrix operations such as LU or
Cholesky factorization. MATLAB implements direct methods through the matrix
division operators / and \, which you can use to solve linear systems.

» Iterative methods produce only an approximate solution after a finite number of steps.
These methods involve the coefficient matrix only indirectly, through a matrix-vector
product or an abstract linear operator. Iterative methods are usually applied only to
sparse matrices.

Direct Methods

Direct methods are usually faster and more generally applicable than indirect methods, if
there is enough storage available to carry them out. Iterative methods are usually
applicable to restricted cases of equations and depend on properties like diagonal
dominance or the existence of an underlying differential operator. Direct methods are
implemented in the core of the MATLAB software and are made as efficient as possible for
general classes of matrices. Iterative methods are usually implemented in MATLAB-
language files and can use the direct solution of subproblems or preconditioners.

4-31

4 Sparse Matrices

Using a Different Preordering

If A is not diagonal, banded, triangular, or a permutation of a triangular matrix, backslash
(\) reorders the indices of A to reduce the amount of fill-in—that is, the number of nonzero
entries that are added to the sparse factorization matrices. The new ordering, called a
preordering, is performed before the factorization of A. In some cases, you might be able
to provide a better preordering than the one used by the backslash algorithm.

To use a different preordering, first turn off both of the automatic preorderings that
backslash might perform by default, using the function spparms as follows:

defaultParms = spparms;
spparms('autoamd',0);
spparms('autommd',0Q);

Now, assuming you have created a permutation vector p that specifies a preordering of
the indices of A, apply backslash to the matrix A(:, p), whose columns are the columns of
A, permuted according to the vector p.

x = A(:,p) \ b;
x(p) = Xx;
spparms(currentParms);

The command spparms (defaultParms) restores the controls to their prior state, in
case you use A\b later without specifying an appropriate preordering.

Iterative Methods

Eleven functions are available that implement iterative methods for sparse systems of
simultaneous linear systems.

4-32

Functions for Iterative Methods for Sparse Systems

Function Method

bicg Biconjugate gradient

bicgstab Biconjugate gradient stabilized
bicgstabl Biconjugate gradient stabilized (1)
cgs Conjugate gradient squared
gmres Generalized minimum residual
lsqr Least squares

minres Minimum residual

pcg Preconditioned conjugate gradient
gmr Quasiminimal residual

symmlq Symmetric LQ

tfgmr Transpose-free quasiminimal residual

Sparse Matrix Operations

These methods are designed to solve Ax = b or minimize the norm of b - Ax. For the
Preconditioned Conjugate Gradient method, pcg, A must be a symmetric, positive definite
matrix. minres and symmlq can be used on symmetric indefinite matrices. For 1sqr, the
matrix need not be square. The other seven can handle nonsymmetric, square matrices
and each method has a distinct benefit.

All eleven methods can make use of preconditioners. The linear system
Ax=b

is replaced by the equivalent system
M tax=M"1p

The preconditioner M is chosen to accelerate convergence of the iterative method. In
many cases, the preconditioners occur naturally in the mathematical model. A partial
differential equation with variable coefficients can be approximated by one with constant
coefficients, for example. Incomplete matrix factorizations can be used in the absence of
natural preconditioners.

The five-point finite difference approximation to Laplace's equation on a square, two-
dimensional domain provides an example. The following statements use the

4-33

4 Sparse Matrices

4-34

preconditioned conjugate gradient method preconditioner M = L*L', where L is the zero-
fill incomplete Cholesky factor of A.

delsq(numgrid('S',50));

ones(size(A,1),1);

= le-3;

xit = 100;

L = ichol(A);

[x,flag,err,iter,res] = pcg(A,b,tol,maxit,L,L");

Twenty-one iterations are required to achieve the prescribed accuracy. On the other hand,
using a different preconditioner may yield better results. For example, using ichol to
construct a modified incomplete Cholesky, the prescribed accuracy is met after only 15
iterations:

L = ichol(A,struct('type', 'nofill', 'michol"','on"));
[x,flag,err,iter,res] = pcg(A,b,tol,maxit,L,L");

Background information on these iterative methods and incomplete factorizations is
available in [2] and [6].